【題目】據(jù)市場調(diào)查發(fā)現(xiàn),某種產(chǎn)品在投放市場的30天中,其銷售價格(元)和時間(天)的關(guān)系如圖所示.
(1)求銷售價格(元)和時間(天)的函數(shù)關(guān)系式;
(2)若日銷售量(件)與時間(天)的函數(shù)關(guān)系式是 ,問該產(chǎn)品投放市場第幾天時,日銷售額(元)最高,且最高為多少元?
【答案】(Ⅰ);(Ⅱ)在第10天時,日銷售額最大,最大值為900元.
【解析】
試題(Ⅰ)通過討論t的范圍,求出函數(shù)的表達(dá)式即可;(Ⅱ)先求出函數(shù)的表達(dá)式,通過討論t的范圍,求出函數(shù)的最大值即可.
解:(Ⅰ)①當(dāng)0≤t<20,t∈N時,
設(shè)P=at+b,將(0,20),(20,40)代入,得解得
所以P=t+20(0≤t<20,t∈N).
②當(dāng)20≤t≤30,t∈N時,
設(shè)P=at+b,將(20,40),(30,30)代入,解得
所以 P=﹣t+60(20≤t≤30,t∈N),)
綜上所述
(Ⅱ)依題意,有y=PQ,
得
化簡得
整理得
①當(dāng)0≤t<20,t∈N時,由y=﹣(t﹣10)2+900可得,當(dāng)t=10時,y有最大值900元.
②當(dāng)20≤t≤30,t∈N時,由y=(t﹣50)2﹣100可得,當(dāng)t=20時,y有最大值800元.
因為 900>800,所以在第10天時,日銷售額最大,最大值為900元.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A、B、C所對的邊分別為a、b、c,已知a≠b,cos2A﹣cos2B= sinAcosA﹣ sinBcosB. (Ⅰ)求角C的大;
(Ⅱ)若c= ,siniA= ,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某鄉(xiāng)鎮(zhèn)為了提高當(dāng)?shù)氐胤浇?jīng)濟(jì)總量,決定引進(jìn)資金對原有的兩個企業(yè)和進(jìn)行改造,計劃每年對兩個企業(yè)共投資500萬元,要求對每個企業(yè)至少投資50萬元.根據(jù)已有經(jīng)驗,改造后企業(yè)的年收益(單位:萬元)和企業(yè)的年收益(單位:萬元)與投入資金(單位:萬元)分別滿足關(guān)系式:,.設(shè)對企業(yè)投資額為(單位:萬元),每年兩個企業(yè)的總收益為(單位:萬元).
(1)求;
(2)試問如何安排兩個企業(yè)的投入資金,才能使兩個企業(yè)的年總收益達(dá)到最大,并求出最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足a1=1,an+1=2an+1(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)設(shè)Sn為數(shù)列{ }的前n項和,求證:1≤Sn<4.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若非零向量 與向量 的夾角為鈍角, ,且當(dāng) 時, (t∈R)取最小值 .向量 滿足 ,則當(dāng) 取最大值時, 等于( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(k為常數(shù),e為自然對數(shù)的底數(shù)),曲線在點(1, f (1))處的切線與x軸平行.
(1)求k的值;
(2)求的單調(diào)區(qū)間;
(3)設(shè)其中為的導(dǎo)函數(shù),證明:對任意
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】古希臘亞歷山大時期的數(shù)學(xué)家帕普斯(Pappus,約300~約350)在《數(shù)學(xué)匯編》第3卷中記載著一個定理:“如果同一平面內(nèi)的一個閉合圖形的內(nèi)部與一條直線不相交,那么該閉合圖形圍繞這條直線旋轉(zhuǎn)一周所得到的旋轉(zhuǎn)體的體積等于閉合圖形面積乘以重心旋轉(zhuǎn)所得周長的積.”如圖,半圓的直徑,點是該半圓弧的中點,半圓弧與直徑所圍成的半圓面(陰影部分不含邊界)的重心位于對稱軸上.若半圓面繞直徑所在直線旋轉(zhuǎn)一周,則所得到的旋轉(zhuǎn)體的體積為__________,___________________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com