分析 由題意利用函數的單調性的性質,對數函數、二次函數的單調性,可得$\left\{\begin{array}{l}{\frac{4a+1}{2}≥1}\\{0<a<1}\\{1-(4a+1)-8a+4≥0}\end{array}\right.$,由此求得實數a的取值范圍.
解答 解:若a=$\frac{1}{2}$,當x<1時,函數f(x)=x2-3x=${(x-\frac{3}{2})}^{2}$-$\frac{9}{4}$∈[-2,+∞);
當x≥1時,f(x)=${log}_{\frac{1}{2}}x$≤0,故函數f(x)的值域為[-2,+∞)∪(-∞,0]=R.
若函數f(x)=$\left\{\begin{array}{l}{{x}^{2}-(4a+1)x-8a+4,x<1}\\{lo{g}_{a}x,x≥1}\end{array}\right.$在R上單調遞減,則$\left\{\begin{array}{l}{\frac{4a+1}{2}≥1}\\{0<a<1}\\{1-(4a+1)-8a+4≥0}\end{array}\right.$,
求得$\frac{1}{4}$≤a≤$\frac{1}{3}$,
故答案為:R;[$\frac{1}{4}$,$\frac{1}{3}$].
點評 本題主要考查函數的單調性的性質,對數函數、二次函數的單調性,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | y=-e•x+1 | B. | y=-x+1 | C. | y=-x | D. | y=-e•x |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | f(x)=$\frac{{2}^{x}+1}{x}$ | B. | f(x)=$\frac{ln({x}^{2}+2)}{x}$ | C. | f(x)=$\frac{{x}^{3}+3}{x}$ | D. | f(x)=$\frac{lnx}{x}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 異面直線PA與BC的夾角為60° | B. | 若M為AD的中點,則AD⊥平面PMB | ||
C. | 二面角P-BC-A的大小為45° | D. | BD⊥平面PAC |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com