分析 求得函數(shù)的導(dǎo)數(shù),求得切線的斜率,由兩直線垂直的條件:斜率之積為-1,可得所求直線的斜率,由點(diǎn)斜式方程即可得到所求直線方程.
解答 解:y=ex的導(dǎo)數(shù)為y′=ex,
可得曲線在P(1,e)處的切線斜率為e,
即有與曲線在該點(diǎn)處的切線垂直的直線斜率為-$\frac{1}{e}$,
則所求直線的方程為y-e=-$\frac{1}{e}$(x-1),
即為x+ey-e2-1=0.
點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的運(yùn)用:求切線的斜率,考查導(dǎo)數(shù)的幾何意義,同時(shí)考查兩直線垂直的條件:斜率之積為-1,直線方程的運(yùn)用,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\widehat{y}$=x+1.9 | B. | $\widehat{y}$=1.8x | C. | $\widehat{y}$=0.95x+1.04 | D. | $\widehat{y}$=1.05x-0.9 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com