(本小題滿分10分)如圖,橢圓C:
的焦距為
2,離心率為
。
(1)求橢圓C的方程
(2)設
是過原點的直線,
是與
垂直相交于P點且與橢圓相交于A、B兩點的直線,
,是否存在上述直線
使
成立?若存在,求出直線
的方程;若不存在,請說明理由。
(1)由2c=2知c=1
(2)設
假設使
成立的直線
存在
1)當
垂直于x軸時由
知
不存在直線
使
成立
2)當
不垂直于x軸時,設
則由
知
由
由
知
將
代入上式并化簡的
,此方程無解
故此時直線
不存在
綜上所訴,不存在直線
使
成立
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
的離心率為
,短軸的一個端點到右焦點的距離為
,直線
交橢圓于不同的兩點
,
(Ⅰ)求橢圓的方程
(Ⅱ)若坐標原點
到直線
的距離為
,求
面積的最大值
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(12分)已知橢圓C:
,兩個焦點分別為
、
,斜率為k的直線
過右焦點
且與橢圓交于A、B兩點,設
與y軸交點為P,線段
的中點恰為B。
(1)若
,求橢圓C的離心率的取值范圍。
(2)若
,A、B到右準線距離之和為
,求橢圓C的方程。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知點P (4,4),圓C:
與橢圓E:
的一個公共點為A(3,1),F(xiàn)
1,F(xiàn)
2分別是橢圓的左、右焦點,直線
與圓C相切。
(1)求m的值與橢圓E的方程;
(2)設D為直線PF
1與圓C 的切點,在橢圓E上是否存在點Q ,使△PDQ是以PD為底的等腰三角形?若存在,請指出共有幾個這樣的點?并說明理由。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知
,方程
表示焦點在
軸上的橢圓,則
的取值范圍是()
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
橢圓的長軸為
為短軸一端點,若
,則橢圓的離心率為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知橢圓+=1,過橢圓的右焦點的直線交橢圓于A、B兩點,交y軸于P點,設=λ1,=λ2,則λ1+λ2的值為
A.- B.- C. D.
查看答案和解析>>