11.把邊長為1的正方形ABCD沿對角線BD折起,形成的三棱錐A-BCD的正視圖和俯視圖如圖所示,則其幾何體的表面積為( 。
A.$\frac{2+\sqrt{2}}{2}$B.$\frac{2+\sqrt{3}}{2}$C.1+$\sqrt{2}$D.1+$\sqrt{3}$

分析 由主視圖可知三棱錐側(cè)面ABD與底面BCD垂直,求出棱錐的高即可得出另2個側(cè)面為等邊三角形,從而可求出幾何體的表面積.

解答 解:由主視圖的腰長為1可知側(cè)面ABD⊥底面BCD,
取BD的中點(diǎn)O,則AO=OC=$\frac{\sqrt{2}}{2}$,∴AC=$\sqrt{2}$AO=1,
∴△ABC,△ACD是等邊三角形,
∴幾何體的表面積為為$\frac{1}{2}+\frac{1}{2}+\frac{\sqrt{3}}{4}+\frac{\sqrt{3}}{4}$=$\frac{2+\sqrt{3}}{2}$.
故選B.

點(diǎn)評 本題考查了棱錐的三視圖,結(jié)構(gòu)特征與表面積計(jì)算,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.曲線f(x)=2x2+x-2在P0處的切線平行于直線y=5x-1,則點(diǎn)P0坐標(biāo)為(1,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如圖是一個四面體的三視圖,則該四面體的體積為( 。
A.$\frac{1}{3}$B.$\frac{1}{4}$C.$\frac{1}{6}$D.$\frac{3}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=x3+ax2+bx+a2在x=1處的極值為10.
(1)求a,b的值;
(2)求函數(shù)f(x)在[0,2]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)分別由下表給出:
x123
f(x)131
x123
g(x)321
若f(g(x))=3,求x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如圖,網(wǎng)絡(luò)紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,則該幾何體的外接球的表面積為(
A.17πB.22πC.68πD.88π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)f(x)=sin($\frac{π}{3}$-2x)的單調(diào)遞增區(qū)間是( 。
A.[-kπ-$\frac{π}{12}$,-kπ+$\frac{5π}{12}$],k∈ZB.[2kπ-$\frac{π}{6}$,2kπ+$\frac{5π}{6}$],k∈Z
C.[kπ+$\frac{5π}{12}$,kπ+$\frac{11π}{12}$],k∈ZD.[kπ-$\frac{π}{6}$,kπ+$\frac{π}{3}$],k∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.△ABC的內(nèi)角A,B,C的對邊分別為a,b,c.
(1)A=45°,B=60°,a=$\sqrt{2}$,求b的值
(2)若△ABC的面積為$\frac{{\sqrt{3}}}{2}$,$c=2,A=\frac{π}{3}$,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.如果對定義在區(qū)間D上的函數(shù)f(x),對區(qū)間D內(nèi)任意兩個不相等的實(shí)數(shù)x1,x2,都有x1f(x1)+x2f(x2)>x${\;}_{{\;}_{1}}$f(x2)+x2f(x1),則稱函數(shù)f(x)為區(qū)間D上的“H函數(shù)”,給出下列函數(shù)及函數(shù)對應(yīng)的區(qū)間
①y=$\frac{1}{3}$x3-$\frac{1}{2}$x2+$\frac{1}{2}$x,(x∈R)
②y=3x+cosx-sinx,x∈(0,$\frac{π}{2}$)
③f(x)=(x+1)e-x,x∈(-∞,1)
④f(x)=xlnx,x∈(0,$\frac{1}{e}$)
以上函數(shù)為區(qū)間D上的“H函數(shù)”的序號是①②(寫出所有正確的序號)

查看答案和解析>>

同步練習(xí)冊答案