A. | 12π | B. | $6\sqrt{3}π$ | C. | 9π | D. | 18π |
分析 根據題意得到該幾何體有一個側面PAC垂直于底面,高為$\frac{3\sqrt{3}}{2}$,底面是一個等腰直角三角形的三棱錐,如圖所示,這個幾何體的外接球的球心O在高線PD上,且是等邊三角形PAC的中心,求出外接球的半徑,即可確定出表面積.
解答 解:由已知中正視圖是一個正三角形,側視圖和俯視圖均為三角形,
可得該幾何體是有一個側面PAC垂直于底面,高為$\frac{3\sqrt{3}}{2}$,底面是一個等腰直角三角形的三棱錐,如圖所示,
∴這個幾何體的外接球的球心O在高線PD上,且是等邊三角形PAC的中心,
∴這個幾何體的外接球的半徑R=$\frac{2}{3}$PD=$\sqrt{3}$,
則幾何體的外接球的表面積為4πR2=12π.
故選A.
點評 此題考查了由三視圖求面積、體積,根據三視圖正確畫出幾何體是解本題的關鍵.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | ($\frac{3}{2}$,+∞) | B. | (-∞,-$\frac{3}{2}$) | C. | (-∞,-$\frac{3}{2}$)∪($\frac{3}{2}$,+∞) | D. | (-$\frac{3}{2}$,$\frac{3}{2}$) |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 命題“若x>1,則x2>1”的逆命題 | B. | 命題“若x=1,則x2+x-2=0”的否命題 | ||
C. | 命題“若x>y,則x>|y|”的逆命題 | D. | 命題“若x2>0,則x>-1”的逆否命題 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | [-$\frac{2π}{3}$,$\frac{π}{3}$] | B. | [$\frac{π}{3}$,$\frac{4π}{3}$] | C. | [-$\frac{5π}{3}$,-$\frac{2π}{3}$] | D. | [0,π] |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | $\frac{14}{9}$ | C. | $\frac{9}{14}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com