5.為了讓學(xué)生了解環(huán)保,增強(qiáng)環(huán)保意識(shí),某中學(xué)舉行了一次環(huán)保知識(shí)競(jìng)賽,共有900名學(xué)生參加了這次競(jìng)賽.為了了解本次競(jìng)賽的成績情況,從中抽取了部分學(xué)生的成績(得分取正整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì).請(qǐng)你根據(jù)下面尚未完成的頻率分布表和頻率分布直方圖,解答下列問題:
分組頻數(shù)頻率
[50,60)40.08
[60,70)80.16
[70,80)100.20
[80,90)160.32
[90,100]
合計(jì)
(1)填充頻率分布表中的空格;
(2)不具體計(jì)算$\frac{頻率}{組距}$,補(bǔ)全頻率分布直方圖.

分析 (1)計(jì)算樣本容量,求出成績?cè)赱90,100]內(nèi)的頻率與頻數(shù),填表;
(2)補(bǔ)充完整頻率分布直方圖即可.

解答 解:(1)樣本容量為n=$\frac{4}{0.08}$=50,
根據(jù)頻率和為1,得;
成績?cè)赱90,100]內(nèi)的頻率為
1-0.08-0.16-0.20-0.32=0.24,
對(duì)應(yīng)的頻數(shù)為
50×0.24=12;完成下表如圖所示;

分組頻數(shù)頻率
[50,60)40.08
[60,70)80.16
[70,80)100.20
[80,90)160.32
[90,100]120.24
合計(jì)501.00
(2)補(bǔ)充完整后的頻率分布直方圖,如圖所示;

點(diǎn)評(píng) 本題考查了填寫頻率分布表與畫頻率分布直方圖的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,且a2=2,S5=15,數(shù)列{bn}的前n項(xiàng)和為Tn,且$b_1^{\;}=\frac{1}{2}$,2nbn+1=(n+1)bn(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式an及前n項(xiàng)和Sn;
(2)求數(shù)列{bn}的通項(xiàng)公式bn及前n項(xiàng)和為Tn
(3)記集合$A=\{n|2{S_n}(2-{T_n})≥λ(n+2),n∈{N^*}\}$,若集合A中有且僅有5個(gè)元素,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在△ABC中,a=2,c=$\sqrt{6}$,A=45°,則C=60°或120°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知M(3,-2),N(-1,0),則線段MN的中點(diǎn)P的坐標(biāo)是(1,-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=-x2+3x-$\frac{1}{4}$,g(x)=x-(m+1)lnx-$\frac{m}{x}$,m∈R.
(1)求函數(shù)g(x)的極值;
(2)若對(duì)任意x1,x2∈[1,e],f(x1)-g(x2)≤1恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.(1)求值:0.064${\;}^{-\frac{1}{3}}$-(-$\frac{1}{8}$)0+16${\;}^{\frac{3}{4}}$+0.25${\;}^{\frac{1}{2}}$+2log36-log312;
(2)求值:cos$\frac{π}{3}$+tan$\frac{π}{4}$+3tan2$\frac{π}{6}$+sin$\frac{π}{2}$+cosπ+sin$\frac{3π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)函數(shù)f(x)=xlnx-$\frac{a}{2}$x2
(1)當(dāng)a=2時(shí),求函數(shù)在x=1處的切線方程;
(2)函數(shù)f(x)在x∈(0,e)時(shí)有兩個(gè)極值點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.用適當(dāng)?shù)姆椒ū硎鞠铝屑?br />①方程x(x2+2x+1)=0的解集;
②在自然數(shù)集內(nèi),小于1 000的奇數(shù)構(gòu)成的集合;
③不等式x-2>6的解的集合;
④大于0.5且不大于6的自然數(shù)的全體構(gòu)成的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)函數(shù)f(x)的定義域?yàn)镈,若存在非零實(shí)數(shù)m滿足對(duì)任意 x∈M(M⊆D),均有x+m∈D,且f(x+m)≥f(x),則稱f(x)為M上的m高調(diào)函數(shù).如果定義域?yàn)镽的函數(shù)f(x)是奇函數(shù),當(dāng)x≥0時(shí),f(x)=|x-a2|-a2,且f(x)為R上的8高調(diào)函數(shù),那么實(shí)數(shù)a的取值范圍是$[-\sqrt{2},\sqrt{2}]$.

查看答案和解析>>

同步練習(xí)冊(cè)答案