4.設(shè)函數(shù)f(x)=x3-11x,若對任意m+1>b>a>2m,不等式$\frac{f(b)-f(a)}{b-a}$<1恒成立,則實數(shù)m的取值范圍是[-1,1).

分析 根據(jù)已知可得區(qū)間(2m,m+1)上函數(shù)f(x)=x3-11x的導(dǎo)函數(shù)f′(x)=3x2-11>1恒成立,進(jìn)而得到答案.

解答 解:若對任意m+1>b>a>2m,不等式$\frac{f(b)-f(a)}{b-a}$<1恒成立,
則在區(qū)間(2m,m+1)上函數(shù)f(x)=x3-11x的導(dǎo)函數(shù)f′(x)=3x2-11<1恒成立,
解3x2-11<1得:x∈(-2,2),
故-2≤2m<m+1≤2,
解得:m∈[-1,1),
故答案為:[-1,1)

點(diǎn)評 本題考查的知識點(diǎn)是利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,轉(zhuǎn)化思想,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知數(shù)列{an}滿足a1=3,且對任意的正整數(shù)m,n都有an+m=an•am,若數(shù)列{bn}滿足bn=n-1+log3an,{bn}的前n項和為Bn
(Ⅰ)求an和Bn;
(Ⅱ)令cn=an•bn,dn=$\frac{4n+4}{{B}_{n}•{B}_{n+2}}$,數(shù)列{cn}的前n項和為Sn,數(shù)列{dn}的前n項和為Tn,分別求Sn和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)y=f(x)的圖象是自原點(diǎn)出發(fā)的一條折線,當(dāng)n≤y≤n+1(n=0,1,2,…)時,該圖象是斜率為bn的線段,其中常數(shù)b>0且b≠1,數(shù)列{xn}由f(xn)=n(n=0,1,2…)定義.
(1)若b=3,求x1,x2
(2)求xn的表達(dá)式及f(x)的解析式(不必求f(x)的定義域);
(3)當(dāng)b>1時,求f(x)的定義域,并證明y=f(x)的圖象與y=x的圖象沒有橫坐標(biāo)大于1的公共點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè){an}是等差數(shù)列,下列結(jié)論中正確的是(  )
A.若a1+a2<0,則a2+a3<0
B.若{an}是正數(shù)數(shù)列,a2+an-1=12,Sn=36.則a3a4的最小值為36
C.若a1<0,則(a2-a1)(a2-a3)>0
D.若0<a1<a2,則a2$>\sqrt{{a}_{1}{a}_{3}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若定義在區(qū)間[a,b]上的函數(shù)f(x)滿足:對任意x1,x2∈[a,b],都有f($\frac{{x}_{1}+{x}_{2}}{2}$)≤$\frac{1}{2}$[f(x1)+f(x2)],則稱f(x)是[a,b]上的“下凸函數(shù)”,則下列說法正確的有(  )個
①f(x)=tanx是(0,$\frac{π}{2}$)上的“下凸函數(shù)”
②無法判斷f(x)=|x|+$\frac{1}{|x|}$在(-∞,0)上是否是“下凸函數(shù)”
③若f(x)=$\left\{\begin{array}{l}{{2}^{x},x∈(-∞,0]}\\{f(x-1)+1,x∈(0,+∞)}\end{array}\right.$是(-∞,+∞)上的“下凸函數(shù)”
④若f(x)是[a,b]上的“下凸函數(shù)”,且對任意x1,x2,…,x8∈[a,b],則必有f($\frac{{x}_{1}{x}_{2}+…+{x}_{8}}{8}$)≤$\frac{1}{8}$[f(x1)+f(x2)+…+f(x8)].
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知數(shù)列{an}滿足an=4an-1-1(n≥2,n∈N*),且a1=1.
(1)求數(shù)列{an}的通項公式.
(2)已知bn=an-2,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.定義在R上的奇函數(shù)f(x)在區(qū)間(-∞,0)上單調(diào)遞減,且f(2)=0,則不等式xf(x-1)≥0的解集為[-1,0]∪[1,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知tanα=3,求下列各式的值.
①$\frac{sinα+5cosα}{2sinα+3cosα}$;
②sin2α+sinαcosα+2cos2α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知cos($α-\frac{π}{6}$)+sinα=$\frac{4}{5}$$\sqrt{3}$,求cos($α-\frac{π}{3}$)的值.

查看答案和解析>>

同步練習(xí)冊答案