16.設(shè)i是虛數(shù)單位,${i^7}-\frac{2}{i}$=(  )
A.-iB.-3iC.iD.3i

分析 直接由復(fù)數(shù)代數(shù)形式的乘除運算化簡${i^7}-\frac{2}{i}$得答案.

解答 解:${i^7}-\frac{2}{i}$=${i}^{4}•{i}^{3}-(\frac{-2i}{-{i}^{2}})=-i+2i=i$,
故選:C.

點評 本題考查了復(fù)數(shù)代數(shù)形式的乘除運算,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的右焦點為F(1,0),且點$P(1,\frac{3}{2})$在橢圓上.
(1)求該橢圓的方程;
(2)過橢圓上異于其頂點的任意一點Q作圓x2+y2=3的兩條切線,切點分別為M,N(M,N不在坐標軸上),若直線MN在x軸,y軸上的截距分別為m,n,證明$\frac{a^2}{n^2}+\frac{b^2}{m^2}$為定值;
(3)若P1,P2是橢圓C1:$\frac{x^2}{a^2}+\frac{{3{y^2}}}{b^2}$=1上不同的兩點,P1P2⊥x軸,圓E過P1,P2且橢圓C1上任意一點都不在圓E內(nèi),則稱圓E為該橢圓的一個內(nèi)切圓,試問:橢圓C1是否存在過左焦點F1的內(nèi)切圓?若存在,求出圓心E的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)e是橢圓$\frac{x^2}{k}+\frac{y^2}{4}=1$的離心率,且$e∈({\frac{1}{2},1})$,則實數(shù)k的取值范圍是(  )
A.(0,3)B.$({3,\frac{16}{3}})$C.(0,2)D.$({0,3})∪({\frac{16}{3},+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=x2+2sinθ•x-1,x∈[-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$].
(1)當(dāng)sinθ=-$\frac{1}{2}$時,求f(x)的最大值和最小值;
(2)若f(x)在x∈[-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$]上是單調(diào)函數(shù),且θ∈[0,2π),求θ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在正方體ABCD-A1B1C1D1中,O為正方形ABCD中心,則A1O與平面ABCD所成角的正切值為( 。
A.$\sqrt{2}$B.$\frac{\sqrt{2}}{2}$C.1D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列四個函數(shù)中在(0,+∞)上為增函數(shù)的是( 。
A.f(x)=3-xB.f(x)=(x-1)2C.f(x)=$\frac{1}{x}$D.f(x)=x2+2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列冪函數(shù)中過點(0,0),(1,1)的偶函數(shù)是( 。
A.$y={x^{\frac{1}{2}}}$B.y=x2C.y=x-1D.y=x3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)是定義在[-1,1]上的奇函數(shù),且f(1)=1,若對任意的x,y∈[-1,1],且x+y≠0,都有(x+y)•[f(x)+f(y)]>0.
(1)判斷f(x)的單調(diào)性,并加以證明;
(2)解不等式$f({x+\frac{1}{2}})+f({2x-1})<0$;
(3)若f(x)≤m2-2am+2對任意的x∈[-1,1],m∈[1,2]恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知數(shù)列{an}滿足條件$\frac{1}{3}{a_1}+\frac{1}{3^2}{a_2}+\frac{1}{3^3}{a_3}+…+\frac{1}{3^n}{a_n}=3n+1$,則數(shù)列{an}的通項公式為(  )
A.${a_n}={3^n}$B.${a_n}={3^{n+1}}$
C.${a_n}=\left\{\begin{array}{l}12,n=1\\{3^n},n≥2\end{array}\right.$D.${a_n}=\left\{\begin{array}{l}12,n=1\\{3^{n+1}},n≥2\end{array}\right.$

查看答案和解析>>

同步練習(xí)冊答案