【題目】已知集合為集合個(gè)非空子集,這個(gè)集合滿(mǎn)足:①?gòu)闹腥稳?/span>個(gè)集合都有 成立;②從中任取個(gè)集合都有 成立

, ,寫(xiě)出滿(mǎn)足題意的一組集合;

, 寫(xiě)出滿(mǎn)足題意的一組集合以及集合;

) ,求集合中的元素個(gè)數(shù)的最小值

【答案】(1)詳見(jiàn)解析;(2)詳見(jiàn)解析;(3)詳見(jiàn)解析.

【解析】試題分析:(Ⅰ)根據(jù)題意一一列舉即可;(Ⅱ)根據(jù)題意一一列舉即可;(Ⅲ)利用反證法進(jìn)行證明.

試題解析: ,

, , ,

集合中元素個(gè)數(shù)的最小值為120個(gè).

下面先證明若,

,

反證法:假設(shè),不妨設(shè)

由假設(shè),設(shè),設(shè),

中都沒(méi)有的元素,

因?yàn)?/span>四個(gè)子集的并集為,

所以矛盾,所以假設(shè)不正確.

,且 ,

成立.則個(gè)集合的并集共計(jì)有個(gè).

把集合中120個(gè)元素與的3個(gè)元素的并集

建立一一對(duì)應(yīng)關(guān)系,所以集合中元素的個(gè)數(shù)大于等于120.

下面我們構(gòu)造一個(gè)有120個(gè)元素的集合

把與 ()對(duì)應(yīng)的元素放在異于的集合中,因此對(duì)于任意一個(gè)個(gè)集合的并集,它們都不含與對(duì)應(yīng)的元素,所以.同時(shí)對(duì)于任意的個(gè)集合不妨為的并集,

則由上面的原則與對(duì)應(yīng)的元素在集合中,

即對(duì)于任意的個(gè)集合的并集為全集

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某廠生產(chǎn)某種零件,每個(gè)零件的成本為40元,出廠單價(jià)定為60元,該廠為鼓勵(lì)銷(xiāo)售商訂購(gòu),決定當(dāng)一次訂購(gòu)量超過(guò)100個(gè)時(shí),每多訂購(gòu)一個(gè),訂購(gòu)的全部零件的出廠單價(jià)就降低0.02元,但實(shí)際出廠單價(jià)不能低于51元.
(1)當(dāng)一次訂購(gòu)量為多少個(gè)時(shí),零件的實(shí)際出廠單價(jià)恰降為51元?
(2)設(shè)一次訂購(gòu)量為x個(gè),零件的實(shí)際出廠單價(jià)為P元,寫(xiě)出函數(shù)P=f(x)的表達(dá)式;
(3)當(dāng)銷(xiāo)售商一次訂購(gòu)500個(gè)零件時(shí),該廠獲得的利潤(rùn)是多少元?如果訂購(gòu)1000個(gè),利潤(rùn)又是多少元?(工廠售出一個(gè)零件的利潤(rùn)=實(shí)際出廠單價(jià)﹣成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知全集U=R,集合 ,集合
(1)求A,B;
(2)求(RA)∩B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)當(dāng)時(shí),求的單調(diào)區(qū)間;

2)若上恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= (x+ ),g(x)= (x﹣ ).
(1)求函數(shù)h(x)=f(x)+2g(x)的零點(diǎn);
(2)求函數(shù)F(x)=[f(x)]2n﹣[g(x)]2n(n∈N*)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校游園活動(dòng)有這樣一個(gè)游戲:甲箱子里裝有3個(gè)白球,2個(gè)黑球,乙箱子里裝有1個(gè)白球,2個(gè)黑球,這些球除了顏色外完全相同,每次游戲從這兩個(gè)箱子里各隨機(jī)摸出2個(gè)球,若摸出的白球不少于2個(gè),則獲獎(jiǎng)(每次游戲結(jié)束后將球放回原箱).
(1)求在1次游戲中:
①摸出3個(gè)白球的概率.
②獲獎(jiǎng)的概率.
(2)求在3次游戲中獲獎(jiǎng)次數(shù)X的分布列.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(﹣1,1),B(7,﹣1),C(﹣2,5),AB邊上的中線所在直線為l.
(1)求直線l的方程;
(2)若點(diǎn)A關(guān)于直線l的對(duì)稱(chēng)點(diǎn)為D,求△BCD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某鋼管生產(chǎn)車(chē)間生產(chǎn)一批鋼管,質(zhì)檢員從中抽出若干根對(duì)其直徑(單位:)進(jìn)行測(cè)量,得出這批鋼管的直徑服從正態(tài)分布.

(Ⅰ)如果鋼管的直徑滿(mǎn)足為合格品,求該批鋼管為合格品的概率(精確到0.01);

(Ⅱ)根據(jù)(Ⅰ)的結(jié)論,現(xiàn)要從40根該種鋼管中任意挑選3根,求次品數(shù)的分布列和數(shù)學(xué)期望.

(參考數(shù)據(jù):若,則;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,P,Q分別是BC和CD的中點(diǎn).
(1)若AB=2,AD=1,∠BAD=60°,求 及cos∠BAC的余弦值;
(2)若 + ,求λ+μ的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案