【題目】已知函數(shù) .
(1)若y=f(x)在(0,+∞)恒單調(diào)遞減,求a的取值范圍;
(2)若函數(shù)y=f(x)有兩個(gè)極值點(diǎn)x1 , x2(x1<x2),求a的取值范圍并證明x1+x2>2.
【答案】
(1)解:因?yàn)閒'(x)=lnx﹣ax+1(x>0),
所以由f'(x)≤0在(0,+∞)上恒成立得 ,
令 ,易知g(x)在(0,1)單調(diào)遞增(1,+∞)單調(diào)遞減,
所以a≥g(1)=1,
即得:a≥1
(2)解:函數(shù)y=f(x)有兩個(gè)極值點(diǎn)x1,x2(x1<x2),
即y=f'(x)有兩個(gè)不同的零點(diǎn),且均為正,f'(x)=lnx﹣ax+1(x>0),
令F(x)=f'(x)=lnx﹣ax+1,由 可知
1)a≤0時(shí),函數(shù)y=f(x)在(0,+∞)上是增函數(shù),不可能有兩個(gè)零點(diǎn).
2)a>0時(shí),y=F(x)在 是增函數(shù)在 是減函數(shù),
此時(shí) 為函數(shù)的極大值,也是最大值.
當(dāng) 時(shí),最多有一個(gè)零點(diǎn),所以 才可能有兩個(gè)零點(diǎn),
得:0<a<1
此時(shí)又因?yàn)? , , ,
令 ,φ(a)在(0,1)上單調(diào)遞增,
所以φ(a)<φ(1)=3﹣e2,即
綜上,所以a的取值范圍是(0,1)
下面證明x1+x2>2
由于y=F(x)在 是增函數(shù)在 是減函數(shù), ,可構(gòu)造出
構(gòu)造函數(shù)
則 ,故m(x)在區(qū)間 上單調(diào)減.又由于 ,
則 ,即有m(x1)>0在 上恒成立,即有 成立.
由于 , ,y=F(x)在 是減函數(shù),所以
所以 成立
【解析】(1)求出函數(shù)的導(dǎo)數(shù),問題轉(zhuǎn)化為 ,令 ,根據(jù)函數(shù)的單調(diào)性求出g(x)的最大值,從而求出a的范圍即可;(2)求出函數(shù)f(x)的導(dǎo)數(shù),令F(x)=f'(x)=lnx﹣ax+1,求出函數(shù)F(x)的導(dǎo)數(shù),通過討論a的范圍求出a的范圍,證明即可.
【考點(diǎn)精析】通過靈活運(yùn)用利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的極值與導(dǎo)數(shù),掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減;求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值即可以解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)f(x)=2sin(2x+ )的圖象向右平移φ(φ>0)個(gè)單位,再將圖象上每一點(diǎn)的橫坐標(biāo)縮短到原來的 倍(縱坐標(biāo)不變),所得圖象關(guān)于直線x= 對稱,則φ的最小值為( )
A. π
B. π
C. π
D. π
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=ex(3x﹣1)﹣ax+a,其中a<1,若有且只有一個(gè)整數(shù)x0使得f(x0)≤0,則a的取值范
圍是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點(diǎn)E,F(xiàn)分別是AB,BC的中點(diǎn).將△AED,△DCF分別沿DE,DF折起,使A,C兩點(diǎn)重合于P.
(1)求證:平面PBD⊥平面BFDE;
(2)求二面角P﹣DE﹣F的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)F(x)= ,(a為實(shí)數(shù)).
(1)根據(jù)a的不同取值,討論函數(shù)y=f(x)的奇偶性,并說明理由;
(2)若對任意的x≥1,都有1≤f(x)≤3,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足:對任意的n∈N*均有an+1=kan+3k﹣3,其中k為不等于0與1的常數(shù),若ai∈{﹣678,﹣78,﹣3,22,222,2222},i=2,3,4,5,則滿足條件的a1所有可能值的和為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C以原點(diǎn)為中心,左焦點(diǎn)F的坐標(biāo)是(﹣1,0),長軸長是短軸長的 倍,直線l與橢圓C交于點(diǎn)A與B,且A、B都在x軸上方,滿足∠OFA+∠OFB=180°;
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)對于動直線l,是否存在一個(gè)定點(diǎn),無論∠OFA如何變化,直線l總經(jīng)過此定點(diǎn)?若存在,求出該定點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)△AnBnCn的三邊長分別為an , bn , cn , △AnBnCn的面積為Sn , n=1,2,3…若b1>c1 , b1+c1=2a1 , an+1=an , , ,則( )
A.{Sn}為遞減數(shù)列
B.{Sn}為遞增數(shù)列
C.{S2n﹣1}為遞增數(shù)列,{S2n}為遞減數(shù)列
D.{S2n﹣1}為遞減數(shù)列,{S2n}為遞增數(shù)列
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com