以下莖葉圖記錄了甲、乙兩組各四名同學(xué)的植樹棵數(shù),乙組記錄中有一個(gè)數(shù)據(jù)模糊,無法確認(rèn),在圖中以X表示.

(1)如果X=8,求乙組同學(xué)植樹棵數(shù)的平均數(shù);
(2) 記甲組四名同學(xué)為A1,A2,A3,A4,乙組四名同學(xué)為B1,B2,B3,B4,如果X=9,分別從甲、乙兩組中隨機(jī)選取一名同學(xué),列舉這兩名同學(xué)的植樹總棵數(shù)為19的所有情形并求該事件的概率.

 (1) ;  (2) P(C)=.

解析試題分析: (1)當(dāng)X=8時(shí),由莖葉圖可知,乙組同學(xué)的植樹棵數(shù)是:8,8,9,10.
所以平均數(shù)為;                 (4分)
(2)所有可能的結(jié)果有16個(gè),它們是:
(A1,B1),(A1,B2),(A1,B3),(A1,B4),
(A2,B1),(A2,B2),(A2,B3),(A2,B4),
(A3,B1),(A3,B2),(A3,B3),(A3,B4),
(A4,B1),(A4,B2),(A4,B3),(A4,B4).             (8分)
用C表示:“選出的兩名同學(xué)的植樹總棵數(shù)為19”這一事件,則C中的結(jié)果有4個(gè),它們是:(A1,B4),(A2,B4),(A3,B2),(A4,B2),故所求概率為P(C)=.         (12分)
考點(diǎn):本題主要考查莖葉圖,平均數(shù),古典概型概率的計(jì)算。
點(diǎn)評(píng):典型題,統(tǒng)計(jì)中的抽樣方法,頻率直方圖,平均數(shù)、方差計(jì)算,概率計(jì)算及分布列問題,是高考必考內(nèi)容及題型。古典概型概率的計(jì)算問題,關(guān)鍵是明確基本事件數(shù),往往借助于“樹圖法”,做到不重不漏。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

“中國式過馬路”存在很大的交通安全隱患.某調(diào)查機(jī)構(gòu)為了解路人對(duì)“中國式過馬路 ”的態(tài)度是否與性別有關(guān),從馬路旁隨機(jī)抽取30名路人進(jìn)行了問卷調(diào)查,得到了如下列聯(lián)表:

 
男性
女性
合計(jì)
反感
10
 
 
不反感
 
8
 
合計(jì)
 
 
30
 
已知在這30人中隨機(jī)抽取1人抽到反感“中國式過馬路 ”的路人的概率是.
(Ⅰ)請(qǐng)將上面的列表補(bǔ)充完整(在答題卡上直接填寫結(jié)果,不需要寫求解過程),并據(jù)此資料分析反感“中國式過馬路 ”與性別是否有關(guān)?(
當(dāng)<2.706時(shí),沒有充分的證據(jù)判定變量性別有關(guān),當(dāng)>2.706時(shí),有90%的把握判定變量性別有關(guān),當(dāng)>3.841時(shí),有95%的把握判定變量性別有關(guān),當(dāng)>6.635時(shí),有99%的把握判定變量性別有關(guān))
(Ⅱ)若從這30人中的女性路人中隨機(jī)抽取2人參加一活動(dòng),記反感“中國式過馬路”的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某校從高一年級(jí)學(xué)生中隨機(jī)抽取40名學(xué)生,將他們的期中考試數(shù)學(xué)成績(滿分100分,成績均為不低于40分的整數(shù))分成六段:后得到如下圖的頻率分布直方圖.

(1)若該校高一年級(jí)共有學(xué)生人,試估計(jì)該校高一年級(jí)期中考試數(shù)學(xué)成績不低于60分的人數(shù);
(2)若從數(shù)學(xué)成績在兩個(gè)分?jǐn)?shù)段內(nèi)的學(xué)生中隨機(jī)選取兩名學(xué)生,求這兩名學(xué)生的數(shù)學(xué)成績之差的絕對(duì)值不大于10的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(文科)(本小題滿分12分)某高校從參加今年自主招生考試的學(xué)生中隨機(jī)抽取容量為50的學(xué)生成績樣本,得頻率分布表如下:

組號(hào)
分組
頻數(shù)
頻率
第一組
 [230,235)
8
0.16
第二組
 [235,240)

0.24
第三組
 [240,245)
15

第四組
 [245,250)
10
0.20
第五組
 [250,255]
5
0.10
合             計(jì)
50
1.00
(1)寫出表中①②位置的數(shù)據(jù);
(2)為了選拔出更優(yōu)秀的學(xué)生,高校決定在第三、四、五組中用分層抽樣法抽取6名學(xué)生進(jìn)行第二輪考核,分別求第三、四、五各組參加考核人數(shù);
(3)在(2)的前提下,高校決定在這6名學(xué)生中錄取2名學(xué)生,求2人中至少有1名是第四組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某班共有學(xué)生40人,將一次數(shù)學(xué)考試成績(單位:分)繪制成頻率分布直方圖,如圖所示。

(1)請(qǐng)根據(jù)圖中所給數(shù)據(jù),求出的值;
(2)從成績在[50,70)內(nèi)的學(xué)生中隨機(jī)選3名學(xué)生,求這3名學(xué)生的成績都在[60,70)內(nèi)的概率;
(3)為了了解學(xué)生本次考試的失分情況,從成績在[50,70)內(nèi)的學(xué)生中隨機(jī)選取3人的成績進(jìn)行分析,用X表示所選學(xué)生成績在[ 60,70)內(nèi)的人數(shù),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某設(shè)備的使用年限與所支出的總費(fèi)用(萬元)有如下的統(tǒng)計(jì)資料:

使用年限
1
2
3
4
總費(fèi)用
1.5
2
3
3.5
(Ⅰ)在給定的坐標(biāo)系中畫出表中數(shù)據(jù)的散點(diǎn)圖; 
    
(Ⅱ)求出關(guān)于的線性回歸方程
(III)當(dāng)使用10年時(shí),所支出的總費(fèi)用約為多少萬元。
參考公式:回歸方程為其中,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

中華人民共和國道路交通安全法》規(guī)定:車輛駕駛員血液酒精濃度在20~80 mg/100ml(不含80)之間,屬于酒后駕車;在80mg/100ml(含80)以上時(shí),屬醉酒駕車,對(duì)于酒后駕車和醉酒駕車的駕駛員公安機(jī)關(guān)將給予不同程度的處罰.
某市公安局交通管理部門在某路段的一次攔查行動(dòng)中,依法檢查了250輛機(jī)動(dòng)車,查出酒后
駕車和醉酒駕車的駕駛員20人,下圖是對(duì)這20人血液中酒精含量進(jìn)行檢查所得結(jié)果的頻率分布
直方圖.

(1)根據(jù)頻率分布直方圖,求此次抽查的250人中,醉酒駕車的人數(shù);
(2)從血液酒精濃度在[70,90)范圍內(nèi)的駕駛員中任取2人,求恰有1人屬于醉酒駕車的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

以下是某地搜集到的新房屋的銷售價(jià)格和房屋的面積的數(shù)據(jù):

房屋面積
110
90
80
100
120
銷售價(jià)格(萬元)
33
31
28
34
39
(1)畫出數(shù)據(jù)對(duì)應(yīng)的散點(diǎn)圖;
(2)求線性回歸方程;
(3)據(jù)(2)的結(jié)果估計(jì)當(dāng)房屋面積為時(shí)的銷售價(jià)格.
(提示:, ,
 )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

駕駛員血液酒精濃度在20~80 mg/100 mL(不含80)之間,屬酒后駕車,血液酒精濃度在80 mg/100 mL(含80)以上時(shí),屬醉酒駕車.市交警一隊(duì)對(duì)過往的車輛進(jìn)行抽查共查出喝過酒的駕車者60名,下圖是這60名駕車者血液中酒精濃度的頻率分布直方圖.
(1) 求這60名駕車者中屬醉酒駕車的人數(shù);(圖中每組包括左端點(diǎn),不包括右端點(diǎn))
(2) 求這60名駕車者血液的酒精濃度的平均值;
(3) 將頻率分布直方圖中的七組從左到右依次命名為第一組,第二組,…,第七組,在第五組和第七組的所有人中抽出兩人,記他們的血液酒精濃度分別為x,y(單位: mg/100 ml),則事件|x-y|≤10的概率是多少?

查看答案和解析>>

同步練習(xí)冊答案