2.在數(shù)列{an}中,a1=2,當n≥2時,有an=3an-1-2,則an=3n-1+1.

分析 n≥2時,an=3an-1-2,變形an-1=3(an-1-1),再利用等比數(shù)列的通項公式即可得出.

解答 解:∵n≥2時,an=3an-1-2,∴an-1=3(an-1-1),
∴數(shù)列{an-1}為等比數(shù)列,首項為1,公比為3.
∴an-1=3n-1,
∴an=3n-1+1,
故答案為:3n-1+1.

點評 本題考查了等比數(shù)列的通項公式、數(shù)列遞推關(guān)系,考查了分類討論方法、推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

12.已知函數(shù)f(x)為偶函數(shù)且滿足:f(x)=f(4-x),當x∈[0,2]時,f(x)=x-1,則不等式xf(x)>0在[-1,3]上的解集為( 。
A.(1,3)B.(-1,1)C.(-1,0)∪(1,3)D.(-1,0)∪(0,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.設數(shù)列{an}的前n項和為Sn,且Sn=(1+λ)-λan,其中λ≠-1,0.求證:數(shù)列{an}是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.給出下列四個命題:
(1)函數(shù)y=ax(a>0且a≠1)與函數(shù)y=logaax(a>0且a≠1)的定義域相同;
(2)函數(shù)y=x3與y=3x的值域相同;
(3)函數(shù)f(x)=$\sqrt{5+4x-{x}^{2}}$的單調(diào)遞增區(qū)間為(-∞,2];
(4)在△ABC中,∠A>∠B是sinA>sinB的充要條件
其中正確命題的序號是(1),(4)(把你認為正確的命題序號都填上).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知實數(shù)x,y滿足$\left\{\begin{array}{l}{x≥\frac{1}{2}}\\{x-y-1≤0}\\{y≤3}\end{array}\right.$,則z=x-3y的最大值是2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.設集合M={0,1},N={1,2,3},映射f:M→N使對任意的x∈M,都有x+f(x)是奇數(shù),則這樣的映射f的個數(shù)是( 。
A.9B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.某學校研究性學習小組對該校高三學生視力情況進行調(diào)查,在髙三的全體1000名學生中隨機抽取了100名學生的體檢表,并得到如圖的頻率分布直方圖.
年級名次
是否近視
1~50951~1000
近視4132
不近視918
(1)若直方圖中后四組的頻數(shù)成等差數(shù)列,試估計全年級視力在5.0以下的人數(shù);
(2)學習小組成員發(fā)現(xiàn),學習成績突出的學生,近視的比較多,為了研究學生的視力與學習成績是否有關(guān)系,對年級名次在1~50名和951~1000名的學生進行了調(diào)查,得到表中數(shù)據(jù),根據(jù)表中的數(shù)據(jù),能否有95%的把握認為視力與學習成績有關(guān)系?
(3)在(2 )中調(diào)查的100名學生中,按照分層抽樣在不近視的學生中抽取了 9人,進一步調(diào)查他們良好的護眼習慣,求在這9人中任取3人,恰好有2人的年級名次在 1~50名的概率.
附:
P(K2>k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
K2=$\frac{{n{{({ad-bc})}^2}}}{{({a+b})({a+d})({a+c})({b+d})}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.設等差數(shù)列{an}的前n項和為Sn,若2a7=5+a9,則S9的值為( 。
A.27B.36C.45D.54

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的一個頂點為A(0,-1),且右焦點到直線x-y+2$\sqrt{2}$=0的距離為3.     
(1)求橢圓的方程;
(2)若直線y=kx+m(k≠0)與橢圓交于不同的兩個點M,N,當|AM|=|AN|時,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案