【題目】某中學舉行了一次“環(huán)保知識競賽”, 全校學生參加了這次競賽.為了了解本次競賽成績情況,從中抽取了部分學生的成績(得分取正整數,滿分為100分)作為樣本進行統(tǒng)計.請根據下面尚未完成并有局部污損的頻率分布表和頻率分布直方圖(如圖所示)解決下列問題:
| 分組 | 頻數 | 頻率 |
第1組 | [50,60) | 8 | 0 16 |
第2組 | [60,70) | a | ▓ |
第3組 | [70,80) | 20 | 0 40 |
第4組 | [80,90) | ▓ | 0 08 |
第5組 | [90,100] | 2 | b |
合計 | ▓ | ▓ |
(1)求出的值;
(2)在選取的樣本中,從競賽成績是80分以上(含80分)的同學中隨機抽取2名同學到廣場參加環(huán)保知識的志愿宣傳活動
(ⅰ)求所抽取的2名同學中至少有1名同學來自第5組的概率;
(ⅱ)求所抽取的2名同學來自同一組的概率
科目:高中數學 來源: 題型:
【題目】近年來,移動支付已成為主要支付方式之一.為了解某校學生上個月,兩種移動支付方式的使用情況,從全校學生隨機抽取了100人,發(fā)現使用或支付方式的學生共有90人,使用支付方式的學生共有70人,,兩種支付方式都使用的有60人,則該校使用支付方式的學生人數與該校學生總數比值的估計值為______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某種商品在50個不同地區(qū)的零售價格全部介于13元與18元之間,將各地價格按如下方式分成五組:第一組,第二組,……,第五組.如圖是按上述分組方法得到的頻率分布直方圖.
(1)求價格落在內的地區(qū)數;
(2)借助頻率分布直方圖,估計該商品價格的中位數(精確到0.1);
(3)現從,這兩組的全部樣本數據中,隨機選取兩個地區(qū)的零售價格,記為,,求事件“”的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的中心在坐標原點,長軸在x軸上,長軸長是短軸長的2倍,兩焦點分別為和,橢圓上一點到和的距離之和為12.圓的圓心為.
(1)求的面積;
(2)若橢圓上所有點都在一個圓內,則稱圓包圍這個橢圓.問:是否存在實數k使得圓包圍橢圓?請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某同學大學畢業(yè)后,決定利用所學專業(yè)進行自主創(chuàng)業(yè),經過市場調查,生產一小型電子產品需投入固定成本2萬元,每生產x萬件,需另投入流動成本C(x)萬元,當年產量小于7萬件時,C(x)=x2+2x(萬元);當年產量不小于7萬件時,C(x)=6x+1nx+﹣17(萬元).已知每件產品售價為6元,假若該同學生產的產M當年全部售完.
(1)寫出年利潤P(x)(萬元)關于年產量x(萬件)的函數解析式;(注:年利潤=年銷售收人﹣固定成本﹣流動成本
(2)當年產量約為多少萬件時,該同學的這一產品所獲年利潤最大?最大年利潤是多少?(取e3≈20)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,設點集,令.從集合Mn中任取兩個不同的點,用隨機變量X表示它們之間的距離.
(1)當n=1時,求X的概率分布;
(2)對給定的正整數n(n≥3),求概率P(X≤n)(用n表示).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[選修4-4:坐標系與參數方程]在平面坐標系中xOy中,已知直線l的參考方程為(t為參數),曲線C的參數方程為(s為參數)。設p為曲線C上的動點,求點P到直線l的距離的最小值
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com