17.若 sinα+cosα=$\frac{{2\sqrt{3}}}{3}$,α為銳角,則$\frac{1+tanα}{sin2α-cos2α+1}$=3.

分析 由sinα+cosα=$\frac{{2\sqrt{3}}}{3}$兩邊平方,求出2sinαcosα的值,再利用二倍角公式和同角的三角函數(shù)關系化簡求值即可.

解答 解:由sinα+cosα=$\frac{{2\sqrt{3}}}{3}$,
兩邊平方得:1+2sinαcosα=$\frac{4}{3}$,
解得,2sinαcosα=$\frac{1}{3}$;
∴$\frac{1+tanα}{sin2α-cos2α+1}$=$\frac{1+\frac{sinα}{cosα}}{2sinαcosα{+2sin}^{2}α}$
=$\frac{\frac{cosα+sinα}{cosα}}{2sinα(cosα+sinα)}$
=$\frac{1}{2sinαcoα}$
=3.
故答案為:3.

點評 本題考查了二倍角公式和同角的三角函數(shù)關系化簡求值的應用問題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

7.將函數(shù)f(x)=2sin2x的圖象向左平移$\frac{π}{12}$個單位后得到函數(shù)g(x)的圖象,若函數(shù)g(x)在區(qū)間[0,$\frac{a}{3}$]和[2a,$\frac{7π}{6}$]上均單調(diào)遞增,則實數(shù)a的取值范圍是( 。
A.[$\frac{π}{3}$,$\frac{π}{2}$]B.[$\frac{π}{6}$,$\frac{π}{2}$]C.[$\frac{π}{6}$,$\frac{π}{3}$]D.[$\frac{π}{4}$,$\frac{3π}{8}$]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.在以下關于向量的命題中,不正確的是( 。
A.若向量$\overrightarrow a=(x,y)$,向量$\overrightarrow b=(-y,x)$(xy≠0),則$\overrightarrow a⊥\overrightarrow b$
B.若四邊形ABCD為菱形,則$\overrightarrow{AB}=\overrightarrow{DC}\;,\;且|\overrightarrow{AB}|=|\overrightarrow{AD}|$
C.點G是△ABC的重心,則$\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow 0$
D.△ABC中,$\overrightarrow{AB}$和$\overrightarrow{CA}$的夾角等于A

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知${(2\sqrt{x}-\frac{1}{2x})^n}$的展開式中二項式系數(shù)和為64,則n=6,該展開式中常數(shù)項為60.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.A、B、C、D、E五個人參加抽獎活動,現(xiàn)有5個紅包,每人各摸一個,5個紅包中有2個8元,1個18元,1個28元,1個0元,(紅包中金額相同視為相同紅包),則A、B兩人都獲獎(0元視為不獲獎)的情況有( 。
A.18種B.24種C.36種D.48種

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知函數(shù)f(x)是定義在R上的周期為2的奇函數(shù),當0<x<1時,f(x)=2x(1-x),則f(-$\frac{5}{2}$)+f(1)=( 。
A.-$\frac{1}{2}$B.-$\frac{1}{4}$C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.平面上點O為坐標原點,A(0,2),B(1,0),C是平面上任意一點且滿足$\overrightarrow{AC}=\overrightarrow{AO}+2\overrightarrow{OB}+\overrightarrow{BA}$,則C點坐標是(1,2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.函數(shù)f(x)對于任意實數(shù)x滿足條件f(x+2)=-f(x),若f(1)=-5,則f(f(5))=5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知向量$\overrightarrow{a}$、$\overrightarrow$滿足$\overrightarrow{a}$•($\overrightarrow{a}$+$\overrightarrow$)=5,且|$\overrightarrow{a}$|=2,|$\overrightarrow$|=1,則向量$\overrightarrow{a}$與$\overrightarrow$夾角余弦值為$\frac{1}{2}$.

查看答案和解析>>

同步練習冊答案