15.①某機場候機室中一天的游客數(shù)量為X,②某網(wǎng)站一天的點擊數(shù)X,③某水電站觀察到一天中水位X,其中是離散型隨機變量的是(  )
A.①②中的XB.①③中的XC.②③中的XD.①②③中的X

分析 由已知條件利用離散型隨機變量的定義直接求解.

解答 解:在①中,某機場候機室中一天的游客數(shù)量為X的取值不確定,且取值為整數(shù),故①中的X是離散型隨機變量;
在②中,某網(wǎng)站一天的點擊數(shù)X的取值不確定,且取值為整數(shù),故②中的X是離散型隨機變量;
在③中,某水電站觀察到一天中水位X的值是連續(xù)的,無法按一定次序一一列出,不符合定義,不是離散型隨機變量;
故③的X不是離散型隨機變量.
故選:A.

點評 本題考查離散型隨機變量的判斷,是基礎(chǔ)題,解題時要認(rèn)真審題,注意離散型隨機變量的定義的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在研究某新措施對“埃博拉”的防治效果問題時,得到如列聯(lián)表:
存活數(shù)死亡數(shù)合計
新措施132150
對照mn150
合計54
則對照組存活數(shù)m=114;死亡數(shù)n═36.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.若函數(shù)f(x)=ax3-bx+4,當(dāng)x=2時,函數(shù)f(x)有極值$-\frac{4}{3}$.
(1)求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)若方程f(x)=k有3個不同的根,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.$lg({\sqrt{3}-\sqrt{2}})$與$lg({\sqrt{3}+\sqrt{2}})$的等差中項是(  )
A.0B.$lg\frac{{\sqrt{3}-\sqrt{2}}}{{\sqrt{3}+\sqrt{2}}}$C.$lg({5-2\sqrt{6}})$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.曲線f(x)=ln(2x+1)在點(0,f(0))處的切線方程為(  )
A.y=xB.y=x+1C.y=2xD.y=2x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若a>1,設(shè)函數(shù)f(x)=ax+x-4的零點是x1,g(x)=logax+x-4的零點為x2,則$\frac{1}{{x}_{1}}$+$\frac{1}{{x}_{2}}$的取值范圍是( 。
A.[3.5,+∞)B.[1,+∞)C.[4,+∞)D.[4.5,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.若函數(shù)f(x)=ax3-bx+4.當(dāng)x=2時,函數(shù)f(x)取得極值$-\frac{4}{3}$.
(1)求函數(shù)的解析式;
(2)求函數(shù)f(x)在區(qū)間[-3,3]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.函數(shù)f(x)$\left\{\begin{array}{l}{lo{g}_{4}x+x-3(x>0)}\\{x-(\frac{1}{4})^{x}+3(x≤0)}\end{array}\right.$若f(x)的兩個零點分別為x1,x2,則|x1-x2|=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.平面直角坐標(biāo)系xOy中,橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+y2=1(a>1)的長軸長為2$\sqrt{2}$,拋物線C2:y2=2px(p>0)的焦點F是橢圓C1的右焦點.
(Ⅰ)求橢圓C1與拋物線C2的方程;
(Ⅱ)過點F作直線l交拋物線C2于A,B兩點,射線OA,OB與橢圓C1的交點分別為C,D,若$\overrightarrow{OA}$•$\overrightarrow{OB}$=2$\sqrt{6}$$\overrightarrow{OC}$•$\overrightarrow{OD}$,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案