分析 通過討論a的符號,得到f(x)的最小值和最大值,由恒成立思想可得a,b滿足的條件,作出可行域,從而求出2a+b的最大值即可.
解答 解:f(x)=ax2-2ax+b=a(x-1)2+b-a,
則函數(shù)的對稱軸為x=1,最值為b-a,
當a>0時,函數(shù)f(x)圖象開口向上,
當x=1時,f(x)取最小值b-a,
當x=3時取最大值3a+b,
由|f(x)|≤1恒成立,即-1≤f(x)≤1在[0,3]恒成立,
可得-1≤b-a,且3a+b≤1,且a>0,
作出點(a,b)滿足的不等式組的可行域,如上圖.
則z=2a+b過點(0,1)時,取得最大值1;
當a<0時,函數(shù)f(x)圖象開口向下,
當x=1時,f(x)取最大值b-a,
當x=3時取最小值3a+b,
由|f(x)|≤1恒成立,即-1≤f(x)≤1在[0,3]恒成立,
可得-1≤3a+b,且-a+b≤1,且a<0,
作出點(a,b)滿足的不等式組的可行域,如下圖.
則z=2a+b過點(0,1)時,取得最大值1.
故答案為:1.
點評 本題考查了二次函數(shù)的性質(zhì),考查分類討論思想,注意運用線性規(guī)劃求最值,是一道中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 5 | B. | 6 | C. | 7 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 1 | C. | $\frac{3}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
月工資 (單位:百元) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75) |
男員工數(shù) | 1 | 8 | 10 | 6 | 4 | 4 |
女員工數(shù) | 4 | 2 | 5 | 4 | 1 | 1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com