【題目】已知函數(shù)為R上的偶函數(shù),當時當時,且對恒成立,函數(shù)的一個周期內(nèi)的圖像與函數(shù)的圖像恰好有兩個公共點,則 ( )
A. B. C. D.
【答案】A
【解析】
先對恒成立得恒成立,由當時,;當時,,得函數(shù)在上單調(diào)遞減,在單調(diào)遞增,由函數(shù)為R上的偶函數(shù),且時,,可得函數(shù)在上單調(diào)遞減,在單調(diào)遞增,且圖像關(guān)于y軸對稱,最小值為,又因為的一個周期內(nèi)的圖像與函數(shù)的圖像恰好有兩個公共點,且最大值為1,所以的最小正周期,且過點,然后可求出解析式.
解:因為對恒成立,且的最大值為1
所以恒成立
又當時,;當時,
所以函數(shù)在上單調(diào)遞減,在單調(diào)遞增
又因為函數(shù)為R上的偶函數(shù),且時,
所以函數(shù)在上單調(diào)遞減,在單調(diào)遞增,且圖像關(guān)于y軸對稱
所以函數(shù)的最小值為
因為函數(shù)最大值為1
且與的圖像恰好有兩個公共點,
則這兩個公共點必在和處
所以函數(shù)的最小正周期,所以
又過點,即,所以
所以
故選:A
科目:高中數(shù)學 來源: 題型:
【題目】已知,是橢圓的左、右焦點,橢圓過點.
(1)求橢圓的方程;
(2)過點的直線(不過坐標原點)與橢圓交于,兩點,且點在軸上方,點在軸下方,若,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著互聯(lián)網(wǎng)的興起,越來越多的人選擇網(wǎng)上購物.某購物平臺為了吸引顧客,提升銷售額,每年雙十一都會進行某種商品的促銷活動.該商品促銷活動規(guī)則如下:①“價由客定”,即所有參與該商品促銷活動的人進行網(wǎng)絡(luò)報價,每個人并不知曉其他人的報價,也不知道參與該商品促銷活動的總?cè)藬?shù);②報價時間截止后,系統(tǒng)根據(jù)當年雙十一該商品數(shù)量配額,按照參與該商品促銷活動人員的報價從高到低分配名額;③每人限購一件,且參與人員分配到名額時必須購買.某位顧客擬參加2019雙十一該商品促銷活動,他為了預測該商品最低成交價,根據(jù)該購物平臺的公告,統(tǒng)計了最近5年雙十一參與該商品促銷活動的人數(shù)(見下表)
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份編號t | 1 | 2 | 3 | 4 | 5 |
參與人數(shù)(百萬人) | 0.5 | 0.6 | 1 | 1.4 | 1.7 |
(1)由收集數(shù)據(jù)的散點圖發(fā)現(xiàn),可用線性回歸模型模擬擬合參與人數(shù)(百萬人)與年份編號之間的相關(guān)關(guān)系.請用最小二乘法求關(guān)于的線性回歸方程:,并預測2019年雙十一參與該商品促銷活動的人數(shù);
(2)該購物平臺調(diào)研部門對2000位擬參與2019年雙十一該商品促銷活動人員的報價價格進行了一個抽樣調(diào)查,得到如下的一份頻數(shù)表:
報價區(qū)間(千元) |
| |||||
頻數(shù) | 200 | 600 | 600 | 300 | 200 | 100 |
①求這2000為參與人員報價的平均值和樣本方差(同一區(qū)間的報價可用該價格區(qū)間的中點值代替);
②假設(shè)所有參與該商品促銷活動人員的報價可視為服從正態(tài)分布,且與可分別由①中所求的樣本平均值和樣本方差估值.若預計2019年雙十一該商品最終銷售量為317400,請你合理預測(需說明理由)該商品的最低成交價.
參考公式即數(shù)據(jù)(i)回歸方程:,其中,
(ii)
(iii)若隨機變量服從正態(tài)分布,則,,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從1到9的九個數(shù)字中取三個偶數(shù)四個奇數(shù),試問:
(1)能組成多少個沒有重復數(shù)字的七位數(shù)?
(2)在(1)中的七位數(shù)中三個偶數(shù)排在一起的有幾個?
(3)在(1)中的七位數(shù)中,偶數(shù)排在一起、奇數(shù)也排在一起的有幾個?
(4)在(1)中任意兩偶然都不相鄰的七位數(shù)有幾個?
(答題要求:先列式,后計算 , 結(jié)果用具體數(shù)字表示.)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中 R.
(1)如果曲線在x=1處的切線斜率為1,求實數(shù)的值;
(2)若函數(shù)的極小值不超過,求實數(shù)的最小值;
(3)對任意[1,2],總存在[4,8],使得=成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,正方形ADEF與梯形ABCD所在平面互相垂直,,,點M是EC的中點.
(1)求證:平面ADEF平面BDE.
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)某大學的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是
A. y與x具有正的線性相關(guān)關(guān)系
B. 回歸直線過樣本點的中心(,)
C. 若該大學某女生身高增加1cm,則其體重約增加0.85kg
D. 若該大學某女生身高為170cm,則可斷定其體重比為58.79kg
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的中心在坐標原點,焦點在軸上,左頂點為,左焦點為,點在橢圓上,直線與橢圓交于, 兩點,直線, 分別與軸交于點, .
(Ⅰ)求橢圓的方程;
(Ⅱ)以為直徑的圓是否經(jīng)過定點?若經(jīng)過,求出定點的坐標;若不經(jīng)過,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】記表示,中的最大值,如.已知函數(shù),.
(1)設(shè),求函數(shù)在上零點的個數(shù);
(2)試探討是否存在實數(shù),使得對恒成立?若存在,求的取值范圍;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com