16.等差數(shù)列{an}滿足a5=14,a7=20,數(shù)列{bn}的前n項和為Sn,且bn=2-2Sn
(Ⅰ) 求數(shù)列{an}的通項公式;
(Ⅱ) 證明數(shù)列{bn}是等比數(shù)列.

分析 (I)利用等差數(shù)列的通項公式即可得出.
(II)利用數(shù)列遞推關(guān)系、等比數(shù)列的定義即可得出.

解答 (Ⅰ) 解:數(shù)列{an}為等差數(shù)列,公差$d=\frac{1}{2}({a_7}-{a_5})=3$,a1=2,∴an=3n-1.
(Ⅱ)證明:由bn=2-2Sn,當(dāng)n≥2時,有bn-1=2-2Sn-1,可得bn-bn-1=-2(Sn-Sn-1)=-2bn.即$\frac{b_n}{{{b_{n-1}}}}=\frac{1}{3}$.
所以{bn}是等比數(shù)列.

點評 本題考查了數(shù)列遞推關(guān)系、等比數(shù)列的定義、等差數(shù)列的通項公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.函數(shù)f(x)=sin2ωx+$\sqrt{3}$sinωxcosωx-$\frac{1}{2}$(ω>0)的圖象與直線y=m相切,相鄰切點之間的距離為π,
(1)求m和ω的值,
(2)求函數(shù)的單調(diào)增區(qū)間,
(3)問:試否存在實數(shù)n,使得函數(shù)f(x)的圖象與直線$\sqrt{6}$x+y+n=0相切,若能,請求出n的值,若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)函數(shù)f(x)=|x2-4x-5|.
(Ⅰ)在區(qū)間[-2,6]上畫出函數(shù)f(x)的圖象;
(Ⅱ)若函數(shù)g(x)=f(x)-4a+1在區(qū)間[-2,6]上有四個零點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.袋中共有6個除了顏色外完全相同的球,其中有1個紅球,2個白球和3個黑球,從袋中任取兩球,兩球顏色為一紅一黑的概率等于( 。
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.函數(shù)f(x)=ln3x-3x在區(qū)間(0,e]的最大值為-ln3-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)=sin(2x-$\frac{π}{6}$)-m在[0,$\frac{π}{2}$]上有兩個零點,則m的取值范圍為( 。
A.($\frac{1}{2}$,1)B.[$\frac{1}{2}$,1)C.[-$\frac{1}{2}$,1]D.(-$\frac{1}{2}$,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在區(qū)間(1,3)中隨機(jī)的取出兩個數(shù),則兩數(shù)之和大于3的概率是$\frac{7}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知集合A={x|x≤a+3},B={x|x<-1或x>5}.
(1)若a=-2,求A∩∁RB;
(2)若A∩B=A,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=2x2+mx-1,m為實數(shù).
(1)已知對任意的實數(shù)f(x),都有f(x)=f(2-x)成立,設(shè)集合A={y|y=f(x),x∈[-$\frac{{\sqrt{2}}}{2}$,$\frac{{\sqrt{2}}}{2}}$]},求集合A.
(2)記所有負(fù)數(shù)的集合為R-,且R-∩{y|y=f(x)+2}=∅,求所有符合條件的m的集合;
(3)設(shè)g(x)=|x-a|-x2-mx(a∈R),求f(x)+g(x)的最小值.

查看答案和解析>>

同步練習(xí)冊答案