【題目】近年來(lái),人們對(duì)食品安全越來(lái)越重視,有機(jī)蔬菜的需求也越來(lái)越大,國(guó)家也制定出臺(tái)了一系列支持有機(jī)肥產(chǎn)業(yè)發(fā)展的優(yōu)惠政策,鼓勵(lì)和引導(dǎo)農(nóng)民增施有機(jī)肥,“藏糧于地,藏糧于技”.根據(jù)某種植基地對(duì)某種有機(jī)蔬菜產(chǎn)量與有機(jī)肥用量的統(tǒng)計(jì),每個(gè)有機(jī)蔬菜大棚產(chǎn)量的增加量(百斤)與使用有機(jī)肥料(千克)之間對(duì)應(yīng)數(shù)據(jù)如下表:
使用有機(jī)肥料(千克) | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
產(chǎn)量增加量 (百斤) | 2.1 | 2.9 | 3.5 | 4.2 | 4.8 | 5.6 | 6.2 | 6.7 |
(1)根據(jù)表中的數(shù)據(jù),試建立關(guān)于的線(xiàn)性回歸方程(精確到);
(2) 若種植基地每天早上7點(diǎn)將采摘的某有機(jī)蔬菜以每千克10元的價(jià)格銷(xiāo)售到某超市,超市以每千克15元的價(jià)格賣(mài)給顧客.已知該超市每天8點(diǎn)開(kāi)始營(yíng)業(yè),22點(diǎn)結(jié)束營(yíng)業(yè),超市規(guī)定:如果當(dāng)天16點(diǎn)前該有機(jī)蔬菜沒(méi)賣(mài)完,則以每千克5元的促銷(xiāo)價(jià)格賣(mài)給顧客(根據(jù)經(jīng)驗(yàn),當(dāng)天都能全部賣(mài)完).該超市統(tǒng)計(jì)了100天該有機(jī)蔬菜在每天的16點(diǎn)前的銷(xiāo)售量(單位:千克),如表:
每天16點(diǎn)前的 銷(xiāo)售量(單位:千克) | 100 | 110 | 120 | 130 | 140 | 150 | 160 |
頻數(shù) | 10 | 20 | 16 | 16 | 14 | 14 | 10 |
若以100天記錄的頻率作為每天16點(diǎn)前銷(xiāo)售量發(fā)生的概率,以該超市當(dāng)天銷(xiāo)售該有機(jī)蔬菜利潤(rùn)的期望值為決策依據(jù),說(shuō)明該超市選擇購(gòu)進(jìn)該有機(jī)蔬菜110千克還是120千克,能使獲得的利潤(rùn)更大?
附:回歸直線(xiàn)方程中的斜率和截距的最小二乘估計(jì)公式分別為: ,.
參考數(shù)據(jù):,.
【答案】(1)(2)選擇購(gòu)進(jìn)該有機(jī)蔬菜120千克,能使得獲得的利潤(rùn)更大
【解析】
(1)求出,,結(jié)合題目所給數(shù)據(jù),代入回歸直線(xiàn)方程中的斜率和截距的最小二乘估計(jì)公式中,即可求出線(xiàn)性回歸方程;
(2)分別計(jì)算出購(gòu)進(jìn)該有機(jī)蔬菜110千克利潤(rùn)的數(shù)學(xué)期望和120千克利潤(rùn)的數(shù)學(xué)期望,進(jìn)行比較即可得到答案。
(1),
因?yàn)?/span>,
所以,
,
所以關(guān)于的線(xiàn)性回歸方程為.
(2)若該超市一天購(gòu)進(jìn)110千克這種有機(jī)蔬菜, 若當(dāng)天的需求量為100千克時(shí),獲得的利潤(rùn)為:(元);若當(dāng)天的需求量大于等于110千克時(shí),獲得的利潤(rùn)為:(元)
記為當(dāng)天的利潤(rùn)(單位:元),則的分布列為
450 | 550 | |
數(shù)學(xué)期望是
若該超市一天購(gòu)進(jìn)120千克這種有機(jī)蔬菜, 若當(dāng)天的需求量為100千克時(shí),獲得的利潤(rùn)為:(元);若當(dāng)天的需求量為110千克時(shí),獲得的利潤(rùn)為:(元);若當(dāng)天的需求量大于或等于120千克時(shí),獲得的利潤(rùn)為:(元)
記為當(dāng)天的利潤(rùn)(單位:元),則的分布列為
400 | 500 | 600 | |
數(shù)學(xué)期望是
因?yàn)?/span>
所以 選擇購(gòu)進(jìn)該有機(jī)蔬菜120千克,能使得獲得的利潤(rùn)更大.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓.
(1)求過(guò)點(diǎn)的圓的切線(xiàn)方程;
(2)若直線(xiàn)過(guò)點(diǎn)且被圓C截得的弦長(zhǎng)為,求的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若,求曲線(xiàn)在點(diǎn)處的切線(xiàn);
(2)若函數(shù)在其定義域內(nèi)為增函數(shù),求正實(shí)數(shù)的取值范圍;
(3)設(shè)函數(shù),若在上至少存在一點(diǎn),使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】據(jù)統(tǒng)計(jì),2017年國(guó)慶中秋假日期間,黔東南州共接待游客590.23萬(wàn)人次,實(shí)現(xiàn)旅游收入48.67億元,同比分別增長(zhǎng)44.57%、55.22%.旅游公司規(guī)定:若公司導(dǎo)游接待旅客,旅游年總收入不低于40(單位:百萬(wàn)元),則稱(chēng)為優(yōu)秀導(dǎo)游.經(jīng)驗(yàn)表明,如果公司的優(yōu)秀導(dǎo)游率越高,則該公司的影響度越高.已知甲、乙兩家旅游公司各有導(dǎo)游100名,統(tǒng)計(jì)他們一年內(nèi)旅游總收入,分別得到甲公司的頻率分布直方圖和乙公司的頻數(shù)分布表如下:
分組 | |||||
頻數(shù) | 18 | 49 | 24 | 5 |
(Ⅰ)求的值,并比較甲、乙兩家旅游公司,哪家的影響度高?
(Ⅱ)若導(dǎo)游的獎(jiǎng)金(單位:萬(wàn)元),與其一年內(nèi)旅游總收入(單位:百萬(wàn)元)之間的關(guān)系為,求甲公司導(dǎo)游的年平均獎(jiǎng)金;
(Ⅲ)從甲、乙兩家公司旅游收入在的總?cè)藬?shù)中,用分層抽樣的方法隨機(jī)抽取6人進(jìn)行表彰,其中有兩名導(dǎo)游代表旅游行業(yè)去參加座談,求參加座談的導(dǎo)游中有乙公司導(dǎo)游的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4—4:極坐標(biāo)與參數(shù)方程
在平面直角坐標(biāo)系中,將曲線(xiàn) (為參數(shù)) 上任意一點(diǎn)經(jīng)過(guò)伸縮變換后得到曲線(xiàn)的圖形.以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸,取相同的單位長(zhǎng)度建立極坐標(biāo)系,已知直線(xiàn).
(Ⅰ)求曲線(xiàn)和直線(xiàn)的普通方程;
(Ⅱ)點(diǎn)P為曲線(xiàn)上的任意一點(diǎn),求點(diǎn)P到直線(xiàn)的距離的最大值及取得最大值時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【2018湖南(長(zhǎng)郡中學(xué)、株洲市第二中學(xué))、江西(九江一中)等十四校高三第一次聯(lián)考】已知函數(shù)(其中且為常數(shù), 為自然對(duì)數(shù)的底數(shù), ).
(Ⅰ)若函數(shù)的極值點(diǎn)只有一個(gè),求實(shí)數(shù)的取值范圍;
(Ⅱ)當(dāng)時(shí),若(其中)恒成立,求的最小值的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(I)求函數(shù)的最大值;
(II)當(dāng)時(shí),函數(shù)有最小值,記的最小值為,求函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某廠(chǎng)生產(chǎn)不同規(guī)格的一種產(chǎn)品,根據(jù)檢測(cè)標(biāo)準(zhǔn),其合格產(chǎn)品的質(zhì)量與尺寸x(mm)之間近似滿(mǎn)足關(guān)系式(b、c為大于0的常數(shù)).按照某項(xiàng)指標(biāo)測(cè)定,當(dāng)產(chǎn)品質(zhì)量與尺寸的比在區(qū)間內(nèi)時(shí)為優(yōu)等品.現(xiàn)隨機(jī)抽取6件合格產(chǎn)品,測(cè)得數(shù)據(jù)如下:
尺寸x(mm) | 38 | 48 | 58 | 68 | 78 | 88 |
質(zhì)量y (g) | 16.8 | 18.8 | 20.7 | 22.4 | 24 | 25.5 |
質(zhì)量與尺寸的比 | 0.442 | 0.392 | 0.357 | 0.329 | 0.308 | 0.290 |
(Ⅰ)現(xiàn)從抽取的6件合格產(chǎn)品中再任選3件,記為取到優(yōu)等品的件數(shù),試求隨機(jī)變量的分布列和期望;
(Ⅱ)根據(jù)測(cè)得數(shù)據(jù)作了初步處理,得相關(guān)統(tǒng)計(jì)量的值如下表:
75.3 | 24.6 | 18.3 | 101.4 |
(。└鶕(jù)所給統(tǒng)計(jì)量,求y關(guān)于x的回歸方程;
(ⅱ)已知優(yōu)等品的收益(單位:千元)與的關(guān)系為,則當(dāng)優(yōu)等品的尺寸x為何值時(shí),收益的預(yù)報(bào)值最大?(精確到0.1)
附:對(duì)于樣本 ,其回歸直線(xiàn)的斜率和截距的最小二乘估計(jì)公式分別為:,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐的底面為直角梯形,,,,為正三角形.
(1)若點(diǎn)是棱的中點(diǎn),求證:平面;
(2)若平面⊥平面,在(1)的條件下,試求四棱錐的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com