【題目】已知函數(shù)f(x)=x2﹣alnx(a∈R).
(1)若曲線f(x)在(1,f(1))處的切線與直線y=﹣x+5垂直,求實數(shù)a的值.
(2)x0∈[1,e],使得 ≤0成立,求實數(shù)a的取值范圍.

【答案】
(1)解:函數(shù)f(x)=x2﹣alnx的導(dǎo)數(shù)為f′(x)=2x﹣

即有曲線f(x)在(1,f(1))處的切線斜率為2﹣a,

由切線與直線y=﹣x+5垂直,可得2﹣a=1,

解得a=1


(2)解:x0∈[1,e],使得 ≤0成立,

即有x0∈[1,e],使得f(x0)+1+a≤0成立,

由lnx0∈[0,1],則1﹣lnx0∈[0,1],

即有x0∈[1,e],﹣a≥ 的最小值,

由y= 的導(dǎo)數(shù)為y′= ,

由于3﹣2lnx0∈[1,3],則導(dǎo)數(shù)大于0,

即有函數(shù)y在[1,e]遞增,

則函數(shù)的最小值為2,

即有﹣a≥2,解得a≤﹣2.

則實數(shù)a的取值范圍是(﹣∞,﹣2]


【解析】(1)求出函數(shù)的導(dǎo)數(shù),求得切線的斜率,由兩直線垂直的條件:斜率之積為﹣1,即可得到所求a的值;(2)由題意可得x0∈[1,e],使得f(x0)+1+a≤0成立,運用參數(shù)分離和構(gòu)造函數(shù)運用導(dǎo)數(shù),判斷單調(diào)性即可得到最小值,進而得到a的范圍.
【考點精析】解答此題的關(guān)鍵在于理解函數(shù)的最大(小)值與導(dǎo)數(shù)的相關(guān)知識,掌握求函數(shù)上的最大值與最小值的步驟:(1)求函數(shù)內(nèi)的極值;(2)將函數(shù)的各極值與端點處的函數(shù)值比較,其中最大的是一個最大值,最小的是最小值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若是函數(shù)的唯一極值點,則實數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C所對的邊長分別為a,b,c,且cos =
(1)若a=3,b= ,求c的值;
(2)若f(A)=sin cos ﹣sin )+ ,求f(A)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果函數(shù)f(x)= 滿足:對于任意的x1 , x2∈[0,2],都有|f(x1)﹣f(x2)|≤a2恒成立,則a的取值范圍是(
A.[﹣ ]
B.[﹣ ]
C.(﹣ ]
D.(﹣ ]∪[

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)=(log2x)2﹣2alog2x+b(x>0).當(dāng)x= 時,f(x)有最小值﹣1.
(1)求a與b的值;
(2)求滿足f(x)<0的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若x+y-1=0(x>0,y>0),則的取值范圍是(  )

A. (0,+∞) B. (,2) C. [,2] D. (,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,圓C的方程為x2+y2-4x=0.若直線y=k(x+1)上存在一點P,使過P所作的圓的兩條切線相互垂直,則實數(shù)k的取值范圍是(  )

A. (-∞,-2) B. [-2,2]

C. [-,] D. (-∞,-2]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐P﹣ABCD的底面ABCD是等腰梯形,AB∥CD,且AC⊥BD,AC與BD交于O,PO⊥底面ABCD,PO=2,AB=2CD=2 ,E,F(xiàn)分別是AB,AP的中點.

(1)求證:AC⊥EF;
(2)求二面角F﹣OE﹣A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正四棱錐V﹣ABCD中(底面是正方形,側(cè)棱均相等),AB=2,VA= ,且該四棱錐可繞著AB任意旋轉(zhuǎn),旋轉(zhuǎn)過程中CD∥平面α,則正四棱錐V﹣ABCD在平面α內(nèi)的正投影的面積的取值范圍是(
A.[2,4]
B.(2,4]
C.[ ,4]
D.[2,2 ]

查看答案和解析>>

同步練習(xí)冊答案