設(shè)雙曲線(a,b>0)兩焦點(diǎn)為F1、、F2,點(diǎn)P為雙曲線右支上除頂點(diǎn)外的任一點(diǎn),則△PF1F2的內(nèi)心的橫坐標(biāo)為( )
A.a(chǎn)
B.c
C.
D.與P點(diǎn)的位置有關(guān)
【答案】分析:充分利用平面幾何圖形的性質(zhì)解題.因從同一點(diǎn)出發(fā)的切線長(zhǎng)相等,得PM|=|PN|,|F1M|=|F1D|,|F2N|=|F2D|,再結(jié)合雙曲線的定義得|F1D|-|F2D|=2a,從而即可求得△PF1F2的內(nèi)心的橫坐標(biāo).
解答:解:記△PF1F2的內(nèi)切圓圓心為C,邊PF1、PF2、F1F2上的切點(diǎn)分別為M、N、D,易見C、D橫坐標(biāo)相等,
|PM|=|PN|,|F1M|=|F1D|,|F2N|=|F2D|,由|PF1|-|PF2|=2a,
即:|PM|+|MF1|-(|PN|+|NF2|)=2a,得|MF1|-|NF2|=2a即|F1D|-|F2D|=2a,
記C的橫坐標(biāo)為x,則D(x,0),
于是:x+c-(c-x)=2a,
得x=a,
故選A
點(diǎn)評(píng):本題主要考查了雙曲線的定義、雙曲線的應(yīng)用及轉(zhuǎn)化問題的能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)雙曲線=1(a>b>0)的兩條漸近線的夾角為α,則它的離心率是(    )

A.cscα             B.secα           C.csc           D.sec

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)雙曲線=1(a>b>0)的兩條漸近線的夾角為α,則它的離心率是(    )

A.cscα             B.secα           C.csc           D.sec

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省寧波市海曙區(qū)效實(shí)中學(xué)高一(上)期中數(shù)學(xué)試卷(1-2班)(解析版) 題型:選擇題

設(shè)雙曲線(a,b>0)兩焦點(diǎn)為F1、、F2,點(diǎn)Q為雙曲線上除頂點(diǎn)外的任一點(diǎn),過焦點(diǎn)F2作∠F1QF2的平分線的垂線,垂足為M,則M點(diǎn)軌跡是( )
A.橢圓的一部分
B.雙曲線的一部分
C.拋物線的一部分
D.圓的一部分

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省五校聯(lián)盟高三(下)第一次聯(lián)考數(shù)學(xué)卷(理科)(解析版) 題型:填空題

設(shè)雙曲線(a>b>0)的右焦點(diǎn)為F,左右頂點(diǎn)分別為A1,A2,過F且與雙曲線C的一條漸近線平行的直線與另一條漸近線相交于P,若P恰好在以A1A2為直徑的圓上,則雙曲線的離心率為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高三數(shù)學(xué)精品復(fù)習(xí)16:雙曲線及其性質(zhì)(解析版) 題型:選擇題

設(shè)雙曲線(a,b>0)兩焦點(diǎn)為F1、、F2,點(diǎn)Q為雙曲線上除頂點(diǎn)外的任一點(diǎn),過焦點(diǎn)F2作∠F1QF2的平分線的垂線,垂足為M,則M點(diǎn)軌跡是( )
A.橢圓的一部分
B.雙曲線的一部分
C.拋物線的一部分
D.圓的一部分

查看答案和解析>>

同步練習(xí)冊(cè)答案