11.計(jì)算下列各式的值:
(1)$\root{3}{{{{(-4)}^3}}}-{(\frac{1}{2})^0}+{0.25^{\frac{1}{2}}}×{(\sqrt{2})^4}+{2^{2+{{log}_2}5}}$
(2)1+$\frac{1}{2}lg0.04-\frac{1}{3}$lg8.

分析 (1)利用有理指數(shù)冪化簡(jiǎn)求解即可.
(2)利用對(duì)數(shù)的運(yùn)算法則化簡(jiǎn)求解即可.

解答 (12分)計(jì)算下列各式的值:
解:(1)$\root{3}{{(-4)}^{3}}-{(\frac{1}{2})}^{0}+0.2{5}^{\frac{1}{2}}×{(\sqrt{2})}^{4}+{2}^{2+{log}_{2}5}$=$-4-1+\frac{1}{2}×2+4×5$=17…(6分)
(2)(2)1+$\frac{1}{2}lg0.04-\frac{1}{3}$lg8=1+lg0.2-lg2=1+lg2-1+lg2=0 …(6分)

點(diǎn)評(píng) 本題考查有理指數(shù)冪運(yùn)算法則以及對(duì)數(shù)運(yùn)算法則的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.求y=tan(3x-$\frac{π}{6}$)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知雙曲線(xiàn)M:9x2-16y2=144,若橢圓N以M的焦點(diǎn)為頂點(diǎn),以M的頂點(diǎn)為焦點(diǎn),則橢圓N的準(zhǔn)線(xiàn)方程是( 。
A.x=±$\frac{16}{5}$B.x=±$\frac{25}{4}$C.x=±$\frac{16}{3}$D.x=±$\frac{25}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.函數(shù)$f(x)=\left\{\begin{array}{l}(1-3a)x+2,x≤1\\{a^x},x>1\end{array}\right.$是R上的減函數(shù),則實(shí)數(shù)a的取值范圍為( 。
A.$(\frac{1}{3},1)$B.$[\frac{3}{4},1)$C.$(\frac{1}{3},\frac{3}{4})$D.$(\frac{1}{3},\frac{3}{4}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.函數(shù)f(x)的定義域?yàn)镈,對(duì)D內(nèi)的任意x1、x2,都有f(x1)≤f(x2),則稱(chēng)f(x)為非減函數(shù).已知f(x)是定義域?yàn)閇0,1]的非減函數(shù),滿(mǎn)足①f(0)=0,②對(duì)任意x∈[0,1],有f(1-x)+f(x)=1,③對(duì)于$x∈[0,\frac{1}{3}]$,$f(x)≥\frac{3}{2}x$恒成立,則$f(\frac{3}{7})+f(\frac{5}{9})$的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.設(shè)偶函數(shù)f(x)滿(mǎn)足:f(1)=2,且當(dāng)時(shí)xy≠0時(shí),$f(\sqrt{{x^2}+{y^2}})=\frac{f(x)f(y)}{f(x)+f(y)}$,則f(-5)=$\frac{2}{25}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知A,D分別是橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左頂點(diǎn)和上頂點(diǎn),點(diǎn)P是線(xiàn)段AD上的任意一點(diǎn),點(diǎn)F1,F(xiàn)2分別是橢圓的左,右焦點(diǎn),且$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$的最大值是1,最小值是-$\frac{11}{5}$,則橢圓的標(biāo)準(zhǔn)方程$\frac{{x}^{2}}{4}$+y2=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.函數(shù)$f(x)=2sin({ωx+φ})(ω>0,|φ|<\frac{π}{2})$的圖象,其部分圖象如圖所示,則f(x)=2sin(x-$\frac{π}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.函數(shù)f(x)=ax-xlna(0<a<1),若對(duì)于任意x∈[-1,1],不等式f(x)≤e-1恒成立,則實(shí)數(shù)a的取值范圍是[$\frac{1}{e}$,1).

查看答案和解析>>

同步練習(xí)冊(cè)答案