【題目】在等比數(shù)列{an}中,a2=3,a5=81,bn=1+2log3an .
(1)求數(shù)列{bn}的前n項(xiàng)的和;
(2)已知數(shù)列 的前項(xiàng)的和為Sn , 證明: .
【答案】
(1)解:設(shè)等比數(shù)列{an}的公比為q,∵a2=3,a5=81,
∴a1q=3, =81,聯(lián)立解得q=3,a1=1.
∴an=3n﹣1.
bn=1+2log3an=1+2(n﹣1)=2n﹣1.
∴數(shù)列{bn}的前n項(xiàng)的和= =n2
(2)解: = = ,
∴Sn=
【解析】(1)利用等比數(shù)列的通項(xiàng)公式、等差數(shù)列的前n項(xiàng)和公式即可得出.(2)利用“裂項(xiàng)求和”即可得出.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解等比數(shù)列的前n項(xiàng)和公式(前項(xiàng)和公式:),還要掌握數(shù)列的前n項(xiàng)和(數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系)的相關(guān)知識(shí)才是答題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以平面直角坐標(biāo)系原點(diǎn)O為極點(diǎn),以x軸非負(fù)半軸為極軸,以平面直角坐標(biāo)系的長(zhǎng)度單位為長(zhǎng)度單位建立極坐標(biāo)系.已知直線l的參數(shù)方程為 (t為參數(shù)),曲線C的極坐標(biāo)方程為ρsin2θ=4cosθ
(Ⅰ) 求曲線C的直角坐標(biāo)方程;
(Ⅱ) 設(shè)直線l與曲線C相交于A,B兩點(diǎn),求|AB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)若曲線在點(diǎn)處的切線經(jīng)過(guò)點(diǎn),求a的值;
(2)若在內(nèi)存在極值,求a的取值范圍;
(3)當(dāng)時(shí),恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩支球隊(duì)進(jìn)行總決賽,比賽采用五場(chǎng)三勝制,即若有一隊(duì)先勝三場(chǎng),則此隊(duì)為總冠軍,比賽就此結(jié)束.因兩隊(duì)實(shí)力相當(dāng),每場(chǎng)比賽兩隊(duì)獲勝的可能性均為二分之一.據(jù)以往資料統(tǒng)計(jì),第一場(chǎng)比賽可獲得門(mén)票收入40萬(wàn)元,以后每場(chǎng)比賽門(mén)票收入比上一場(chǎng)增加10萬(wàn)元.
(1)求總決賽中獲得門(mén)票總收入恰好為150萬(wàn)元且甲獲得總冠軍的概率;
(2)設(shè)總決賽中獲得的門(mén)票總收入為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn , 且 ,S20=17,則S30為( )
A.15
B.20
C.25
D.30
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=lnx+ ax2﹣2bx
(1)設(shè)點(diǎn)a=﹣3,b=1,求f(x)的最大值;
(2)當(dāng)a=0,b=﹣ 時(shí),方程2mf(x)=x2有唯一實(shí)數(shù)解,求正數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ex(e=2.71828…),g(x)為其反函數(shù).
(1)求函數(shù)F(x)=g(x)﹣ax的單調(diào)區(qū)間;
(2)設(shè)直線l與f(x),g(x)均相切,切點(diǎn)分別為(x1 , f(x1)),(x2 , f(x2)),且x1>x2>0,求證:x1>1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若對(duì)任意x∈A,y∈B,(AR,BR)有唯一確定的f(x,y)與之對(duì)應(yīng),則稱f(x,y)為關(guān)于x、y的二元函數(shù).現(xiàn)定義滿足下列性質(zhì)的二元函數(shù)f(x,y)為關(guān)于實(shí)數(shù)x、y的廣義“距離”;
(1)非負(fù)性:f(x,y)≥0,當(dāng)且僅當(dāng)x=y時(shí)取等號(hào);
(2)對(duì)稱性:f(x,y)=f(y,x);
(3)三角形不等式:f(x,y)≤f(x,z)+f(z,y)對(duì)任意的實(shí)數(shù)z均成立.
今給出三個(gè)二元函數(shù),請(qǐng)選出所有能夠成為關(guān)于x、y的廣義“距離”的序號(hào):
①f(x,y)=|x﹣y|;②f(x,y)=(x﹣y)2;③ .
能夠成為關(guān)于的x、y的廣義“距離”的函數(shù)的序號(hào)是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是函數(shù)的導(dǎo)函數(shù)的圖象,給出下列命題:
①是函數(shù)的極值點(diǎn);
②是函數(shù)的最小值點(diǎn);
③在處切線的斜率小于零;
④在區(qū)間上單調(diào)遞增。
則正確命題的序號(hào)是( )
A.①②
B.①④
C.②③
D.③④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com