【題目】函數f(x)=xln(ax+1)(a≠0).
(Ⅰ)討論f(x)的單調性;
(Ⅱ)若a>0且滿足:對x1 , x2∈[﹣1,1],都有|f(x1)﹣f(x2)|≤ln3﹣ln2,試比較ea﹣1與 的大小,并證明.
【答案】解:(Ⅰ) , . 當a>0時,f'(x)>0,f'(x)單調遞增,又f'(0)=0,
所以當 時,f'(x)<0,f(x)單調遞減;
當x∈(0,+∞)時,f'(x)>0,f(x)單調遞增;
當a<0時,f'(x)<0,f'(x)單調遞減,又f'(0)=0,
所以當x∈(﹣∞,0)時,f'(x)>0,f(x)單調遞增;
當 時,f'(x)<0,f(x)單調遞減.
(Ⅱ)當a>0時,由 得a≤1.
由(Ⅰ)知f(x)在[﹣1,0]上單調遞減,在[0,1]上單調遞增,
所以對x1 , x2∈[﹣1,1],都有|f(x1)﹣f(x2)|≤ln3﹣ln2,
等價于 即 解得 ;
令 ,g′(x)=1﹣(1﹣ ) ,
時,g'(x)<0,g(x)單調遞減;
當 時,g'(x)>0,g(x)單調遞增;
又 ,所以 .
即 ,所以
【解析】(Ⅰ)求出函數的導數,通過討論a的范圍,求出函數的單調區(qū)間即可;(Ⅱ)問題等價于 ,解得a的范圍,令 ,根據函數的單調性證明即可.
【考點精析】通過靈活運用利用導數研究函數的單調性,掌握一般的,函數的單調性與其導數的正負有如下關系: 在某個區(qū)間內,(1)如果,那么函數在這個區(qū)間單調遞增;(2)如果,那么函數在這個區(qū)間單調遞減即可以解答此題.
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥面ABCD,AB∥CD,CD⊥AD,AD=CD=2AB=2,E,F分別為PC,CD的中點
(1)求證:平面ABE⊥平面BEF
(2)設PA=a,若平面EBD與平面ABCD所成銳二面角θ∈[ , ],求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知集合A={x|3≤≤27},B={x|>1}.
(1)分別求A∩B,()∪A;
(2)已知集合C={x|1<x<a},若CA,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數的f(x)= sin(ωx+φ)(ω>0,﹣ )圖象關于直線x= 對稱,且圖象上相鄰兩個最高點的距離為π,若 (0<α<π),則 =( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知二次函數f(x)=ax2+bx+c(a,b,c∈R)滿足:對任意實數x,都有f(x)≥x,且當x∈(1,3)時,有f(x)≤ (x+2)2成立.
(1)證明:f(2)=2;
(2)若f(-2)=0,求f(x)的表達式;
(3)設g(x)=f(x)-x,x∈[0,+∞),若g(x)圖象上的點都位于直線y=的上方,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知隨機變量X服從正態(tài)分布N(μ,σ2),且P(μ-2σ<X<μ+2σ)=0.954 4,P(μ-σ<X<μ+σ)=0.682 6.若μ=4,σ=1,則P(5<X<6)=( )
A. 0.135 9 B. 0.135 8 C. 0.271 8 D. 0.271 6;
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,AB=2,PD= ,O為AC與BD的交點,E為棱PB上一點.
(Ⅰ)證明:平面EAC⊥平面PBD;
(Ⅱ)若PD∥平面EAC,求三棱錐P﹣EAD的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線l過點P(2,),且傾斜角α=,曲線C: (θ為參數),直線l與曲線C相交于不同的兩點A,B.
(1)寫出直線的參數方程,及曲線C的普通方程;
(2)求線段AB的中點Q的坐標,及的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C: =1的左頂點為A(﹣3,0),左焦點恰為圓x2+2x+y2+m=0(m∈R)的圓心M.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點A且與圓M相切于點B的直線,交橢圓C于點P,P與橢圓C右焦點的連線交橢圓于Q,若三點B,M,Q共線,求實數m的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com