精英家教網 > 高中數學 > 題目詳情

【題目】函數f(x)=xln(ax+1)(a≠0).
(Ⅰ)討論f(x)的單調性;
(Ⅱ)若a>0且滿足:對x1 , x2∈[﹣1,1],都有|f(x1)﹣f(x2)|≤ln3﹣ln2,試比較ea1 的大小,并證明.

【答案】解:(Ⅰ) . 當a>0時,f'(x)>0,f'(x)單調遞增,又f'(0)=0,
所以當 時,f'(x)<0,f(x)單調遞減;
當x∈(0,+∞)時,f'(x)>0,f(x)單調遞增;
當a<0時,f'(x)<0,f'(x)單調遞減,又f'(0)=0,
所以當x∈(﹣∞,0)時,f'(x)>0,f(x)單調遞增;
時,f'(x)<0,f(x)單調遞減.
(Ⅱ)當a>0時,由 得a≤1.
由(Ⅰ)知f(x)在[﹣1,0]上單調遞減,在[0,1]上單調遞增,
所以對x1 , x2∈[﹣1,1],都有|f(x1)﹣f(x2)|≤ln3﹣ln2,
等價于 解得 ;
,g′(x)=1﹣(1﹣
時,g'(x)<0,g(x)單調遞減;
時,g'(x)>0,g(x)單調遞增;
,所以
,所以
【解析】(Ⅰ)求出函數的導數,通過討論a的范圍,求出函數的單調區(qū)間即可;(Ⅱ)問題等價于 ,解得a的范圍,令 ,根據函數的單調性證明即可.
【考點精析】通過靈活運用利用導數研究函數的單調性,掌握一般的,函數的單調性與其導數的正負有如下關系: 在某個區(qū)間內,(1)如果,那么函數在這個區(qū)間單調遞增;(2)如果,那么函數在這個區(qū)間單調遞減即可以解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PA⊥面ABCD,AB∥CD,CD⊥AD,AD=CD=2AB=2,E,F分別為PC,CD的中點
(1)求證:平面ABE⊥平面BEF
(2)設PA=a,若平面EBD與平面ABCD所成銳二面角θ∈[ , ],求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知集合A={x|3≤≤27},B={x|>1}.

(1)分別求A∩B,()∪A;

(2)已知集合C={x|1<x<a},若CA,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數的f(x)= sin(ωx+φ)(ω>0,﹣ )圖象關于直線x= 對稱,且圖象上相鄰兩個最高點的距離為π,若 (0<α<π),則 =(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知二次函數f(x)=ax2bxc(a,b,cR)滿足:對任意實數x,都有f(x)≥x,且當x(1,3)時,有f(x)≤ (x+2)2成立.

(1)證明:f(2)=2;

(2)f(-2)=0,求f(x)的表達式;

(3)g(x)=f(x)-x,x[0,+∞),若g(x)圖象上的點都位于直線y的上方,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知隨機變量X服從正態(tài)分布Nμ,σ2),且PμXμ)=0.954 4,PμσXμσ)=0.682 6.μ4,σ1,則P5X6)=( )

A. 0.135 9 B. 0.135 8 C. 0.271 8 D. 0.271 6;

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,AB=2,PD= ,O為AC與BD的交點,E為棱PB上一點.
(Ⅰ)證明:平面EAC⊥平面PBD;
(Ⅱ)若PD∥平面EAC,求三棱錐P﹣EAD的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知直線l過點P(2,),且傾斜角α,曲線C (θ為參數),直線l與曲線C相交于不同的兩點A,B.

(1)寫出直線的參數方程,及曲線C的普通方程;

(2)求線段AB的中點Q的坐標,及的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓C: =1的左頂點為A(﹣3,0),左焦點恰為圓x2+2x+y2+m=0(m∈R)的圓心M.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點A且與圓M相切于點B的直線,交橢圓C于點P,P與橢圓C右焦點的連線交橢圓于Q,若三點B,M,Q共線,求實數m的值.

查看答案和解析>>

同步練習冊答案