18.函數(shù)f(x)由如表定義:
x25314
f(x)12345
若a0=4,an+1=f(an),n=0,1,2,…,則a2017值為( 。
A.1B.2C.4D.5

分析 由表格可知:f(5)=2,f(2)=1,f(1)=4,f(4)=5,f(3)=3.由于a0=4,an+1=f(an),n=0,1,2,…,可得an+4=an,即可得出.

解答 解:由表格可知:f(5)=2,f(2)=1,f(1)=4,f(4)=5,f(3)=3.
又a0=4,an+1=f(an),n=0,1,2,…,
∴a1=f(a0)=f(4)=5,a2=f(a1)=f(5)=2,a3=f(a2)=f(2)=1,
a4=f(a3)=f(1)=4,a5=f(a4)=f(4)=5,….
∴an+4=an,
∴a2017=a504×4+1=a1=5.
故選D.

點(diǎn)評(píng) 本題考查了函數(shù)的性質(zhì)、數(shù)列的周期性,考查了歸納法,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=$\frac{1}{2}$x2+lnx.
(1)求函數(shù)f(x)在區(qū)間[1,e]上的最小值及最大值
(2)求證:在區(qū)間(1,+∞)上,函數(shù)f(x)的圖象在函數(shù)g(x)=$\frac{2}{3}$x3的圖象的下方.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.如圖,正方體ABCD-A1B1C1D1中,E、F分別是AB、BC的中點(diǎn),過(guò)點(diǎn)D1、E、F的截面將正方體分割成兩個(gè)部分,記這兩個(gè)部分的體積分別為V1、V2(V1<V2),則V1:V2=(  )
A.$\frac{1}{3}$B.$\frac{3}{5}$C.$\frac{25}{47}$D.$\frac{7}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知i是虛數(shù)單位,若$z({1-\frac{1}{2}i})=\frac{1}{2}i$,則|Z|=( 。
A.1B.$\frac{{\sqrt{3}}}{2}$C.$\sqrt{5}$D.$\frac{{\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.如圖,已知四邊形ABCD為矩形,PA⊥平面ABCD,下列結(jié)論中不一定正確的是( 。
A.PD⊥CDB.BD⊥平面PAOC.PB⊥CBD.BC∥平面PAD

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.函數(shù)y=3${\;}^{-{x}^{2}+ax}$在[$\frac{1}{2}$,1]上單調(diào)遞增,則a的取值范圍為[2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知x,y滿足約束條件$\left\{\begin{array}{l}x-y-2≤0\\ x+2y-5≥0\\ y-2≤0\end{array}\right.$,則z=$\frac{y+1}{x+1}$的范圍是( 。
A.$[\frac{1}{3},2]$B.$[-\frac{1}{2},\frac{1}{2}]$C.$[\frac{1}{2},\frac{3}{2}]$D.$[\frac{3}{2},\frac{5}{2}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.a(chǎn),b,c,m,n,表示直線,α,β表示平面,給出下列四個(gè)命題:
①若a∥α,b∥α,則a∥b;
②若α∥β,β∥γ,m⊥α,則m⊥γ;
③若a⊥c,b⊥c,則a∥b;
④若α⊥γ,β⊥γ,則α∥β
⑤若m⊥α,n∥α,則m⊥n;
其中正確命題的有②⑤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.對(duì)于原命題:“已知a,b,c∈R,若a>b,則ac2>bc2”,以及它的逆命題、否命題、逆否命題,在這4個(gè)命題中,真命題的個(gè)數(shù)為(  )
A.0個(gè)B.1個(gè)C.2個(gè)D.4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案