18.設(shè)Sn是首項不為零的等差數(shù)列{an}的前n項和,且S1,S2,S4成等比數(shù)列,則$\frac{a_2}{a_1}$等于1或3.

分析 設(shè)等差數(shù)列{an}的公差為d,由S1,S2,S4成等比數(shù)列,可得${S}_{2}^{2}$=S1•S4,代入化簡即可得出.

解答 解:設(shè)等差數(shù)列{an}的公差為d,∵S1,S2,S4成等比數(shù)列,
∴${S}_{2}^{2}$=S1•S4,
∴$(2{a}_{1}+d)^{2}$=${a}_{1}(4{a}_{1}+\frac{4×3}{2}d)$,d≠0.
化為:d2=2a1d,解得d=0,或d=2a1
則$\frac{a_2}{a_1}$=1或3.
故答案為:1或3.

點評 本題考查了等比數(shù)列與等差數(shù)列的通項公式與求和公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)集合A={x|y=ln(x-1)},集合B={y|y=2x},則A∪B( 。
A.(0,+∞)B.(1,+∞)C.(0,1)D.(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.如圖,已知圓O是△ABC的外接圓,AB=BC,AD是 BC邊上的高,AE 是圓O的直徑,過點C作圓O的切線交BA的延長線于點F.
(Ⅰ)求證:AC•BC=AD•AE;    
(Ⅱ)若AF=2,CF=2$\sqrt{2}$,求AE的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=2$\sqrt{3}$cos(ωx+$\frac{π}{6}}$)的最小正周期是π,則f(${\frac{π}{3}}$)=-3或0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=x3+ax2-a2x+2.
(1)若a=-1,求曲線y=f(x)在點(2,f(2))處的切線方程;
(2)若a≠0 求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.長方體ABCD-A1B1C1D1中,AB=BC=4,AA1=3,則四面體A1BC1D的體積為16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知復(fù)數(shù)z滿足z(1-i)=2,其中i為虛數(shù)單位,則z的實部為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.函數(shù)y=($\frac{1}{2}$)|x+1|的值域是(0,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知中心在坐標(biāo)原點,焦點在x軸上的橢圓,離心率為$\frac{{\sqrt{6}}}{3}$且過點(${\sqrt{5}$,0),過定點C(-1,0)的動直線與該橢圓相交于A、B兩點.
(1)若線段AB中點的橫坐標(biāo)是-$\frac{1}{2}$,求直線AB的方程;
(2)在x軸上是否存在點M,使$\overrightarrow{MA}$•$\overrightarrow{MB}$為常數(shù)?若存在,求出點M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案