【題目】為提高產(chǎn)品質(zhì)量,某企業(yè)質(zhì)量管理部門經(jīng)常不定期地抽查產(chǎn)品進(jìn)行檢測(cè),現(xiàn)在某條生產(chǎn)線上隨機(jī)抽取100個(gè)產(chǎn)品進(jìn)行相關(guān)數(shù)據(jù)的對(duì)比,并對(duì)每個(gè)產(chǎn)品進(jìn)行綜合評(píng)分(滿分100分),將每個(gè)產(chǎn)品所得的綜合評(píng)分制成如圖所示的頻率分布直方圖.記綜合評(píng)分為80分及以上的產(chǎn)品為一等品.

1)求圖中的值;

2)求綜合評(píng)分的中位數(shù);

3)用樣本估計(jì)總體,以頻率作為概率,按分層抽樣的思想,先在該條生產(chǎn)線中隨機(jī)抽取5個(gè)產(chǎn)品,再?gòu)倪@5個(gè)產(chǎn)品中隨機(jī)抽取2個(gè)產(chǎn)品記錄有關(guān)數(shù)據(jù),求這2個(gè)產(chǎn)品中至多有一個(gè)一等品的概率.

【答案】12)中位數(shù)為82.53

【解析】

1)根據(jù)頻率之和等于1,即可得出的值;

2)根據(jù)中位數(shù)的求解方法求解即可;

3)利用分層抽樣的性質(zhì)得出抽取5個(gè)產(chǎn)品中,一等品有3個(gè),非一等品2個(gè),利用列舉法結(jié)合古典概型的概率公式求解即可.

解:(1)由頻率和為1,得,;

2)設(shè)綜合評(píng)分的中位數(shù)為,則

解得,所以綜合評(píng)分的中位數(shù)為82.5.

3)由頻率分布直方圖知,一等品的頻率為,即概率為0.6;

所以100個(gè)產(chǎn)品中一等品有60個(gè),非一等品有40個(gè),則一等品與非一等品的抽樣比為;

所以現(xiàn)抽取5個(gè)產(chǎn)品,一等品有3個(gè),記為、、,非一等品2個(gè),記為、;

從這5個(gè)產(chǎn)品中隨機(jī)抽取2個(gè),基本事件為:、、、、、、、10種;

抽取的這2個(gè)產(chǎn)品中恰有一個(gè)一等品的事件為:、、、、、、7種,

所以所求的概率為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中,正確的是(

A.中,

B.在銳角中,不等式恒成立

C.中,若,則必是等腰直角三角形

D.中,若,則必是等邊三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018衡水金卷(二)如圖,矩形中, , 于點(diǎn)

I)若點(diǎn)的軌跡是曲線的一部分,曲線關(guān)于軸、軸、原點(diǎn)都對(duì)稱,求曲線的軌跡方程;

II)過點(diǎn)作曲線的兩條互相垂直的弦,四邊形的面積為,探究是否為定值?若是,求出此定值,若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓經(jīng)過(2,5),(﹣2,1)兩點(diǎn),并且圓心在直線yx.

1)求圓的標(biāo)準(zhǔn)方程;

2)求圓上的點(diǎn)到直線3x4y+230的最小距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程是 (為參數(shù)),以原點(diǎn)為極點(diǎn), 軸正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

(Ⅰ)求曲線的普通方程與直線的直角坐標(biāo)方程;

(Ⅱ)已知直線與曲線交于, 兩點(diǎn),與軸交于點(diǎn),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四面體ABCD中,O是BD的中點(diǎn),CA=CB=CD=BD=2,AB=AD=

(1)求證:AO⊥平面BCD;

(2)求二面角O﹣AC﹣D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的離心率為,以原點(diǎn)為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線相切. 、是橢圓的右頂點(diǎn)與上頂點(diǎn),直線與橢圓相交于兩點(diǎn).

(Ⅰ)求橢圓的方程;

(Ⅱ)當(dāng)四邊形面積取最大值時(shí),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,圓的方程為,若直線上至少存在一點(diǎn),使得以該點(diǎn)為圓心,1為半徑的圓與圓有公共點(diǎn),則的最大值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), .

(1)討論函數(shù)的單調(diào)性;

(2)已知,若函數(shù)恒成立,試確定的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案