1.矩形ABCD的對角線AC,BD成60°角,把矩形所在的平面以AC為折痕,折成一個直二面角D-AC-B,連接BD,則BD與平面ABC所成角的正切值為( 。
A.$\sqrt{\frac{7}{10}}$B.$\frac{\sqrt{21}}{7}$C.$\frac{3}{2}$D.$\frac{\sqrt{7}}{2}$

分析 設(shè)AD=1,計算D到AC的距離AE,垂足E到B的距離BE,則$\frac{DE}{BE}$即為所求.

解答 解:∵AC,BD成60°角,OA=OD,∴△AOD是等邊三角形,
過D作DE⊥AC,則E為OA的中點,
設(shè)AD=1,則DE=$\frac{\sqrt{3}}{2}$,AE=$\frac{1}{2}$,AB=$\sqrt{3}$,
∴BE=$\sqrt{A{B}^{2}+A{E}^{2}-2AB•AE•cos30°}$=$\frac{\sqrt{7}}{2}$,
∴折疊后BD與平面ABC所成角的正切值為$\frac{DE}{BE}$=$\frac{\sqrt{21}}{7}$.
故選B.

點評 本題考查了線面角的計算,將平面圖形轉(zhuǎn)化為立體圖形,作出線面角是關(guān)鍵,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.有一段演繹推理是這樣的:“直線平行于平面,則此直線平行于平面內(nèi)的所有直線;已知直線b∥平面α,直線a?平面α,則直線b∥直線a”.結(jié)論顯然是錯誤的,這是因為(1).
(1)大前提錯誤    (2)推理形式錯誤     (3)小前提錯誤     (4)以上都錯誤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知等差數(shù)列{an}的前n和為Sn,公差d≠0.且a3+S5=42,a1,a4,a13成等比數(shù)列
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若Sn表示數(shù)列{an}的前n項和,求數(shù)列$\left\{{\frac{1}{S_n}}\right\}$的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若tanα=4的值,則$\frac{{sin(π-α)-sin(\frac{π}{2}+α)}}{cos(-α)}$=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知樣本x1,x2,x3,…,xn的方差是2,則樣本3x1+2,3x2+2,3x3+2,…,3xn+2的標(biāo)準(zhǔn)差為3$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如2x+2-x=5,求4x+$\frac{1}{{4}^{x}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在等差數(shù)列{an}中,若a4+a6+a8+a10+a12=90,則${a_{10}}-\frac{1}{3}{a_{14}}$的值為12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.求下列函數(shù)的導(dǎo)數(shù)
(1))y=$\root{4}{{x}^{3}}$+2x+5;              
(2)y=x2sinx+cosx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若關(guān)于x的方程x3-3x+m=0在[0,2]上有兩個根,則實數(shù)m的取值范圍為( 。
A.[0,2)B.[-2,2)C.(-2,0]D.(-∞,-2)∪(2,+∞)

查看答案和解析>>

同步練習(xí)冊答案