A. | f(x)=|x|,g(t)=$\sqrt{{t}^{2}}$ | B. | y=x,y=$\frac{{x}^{2}}{x}$ | ||
C. | f(x)=$\sqrt{1+x}$-$\sqrt{x-1}$,y=$\sqrt{{x}^{2}-1}$ | D. | f(x)=$\sqrt{(3-x)^{2}}$,y=x-3 |
分析 根據(jù)兩個(gè)函數(shù)的定義域相同,對(duì)應(yīng)關(guān)系也相同,判斷它們是同一函數(shù)即可.
解答 解:對(duì)于A:f(x)=|x|的定義域{x|x∈R},g(t)=$\sqrt{{t}^{2}}$=|t|的定義域{t|t∈R},它們定義域相同,對(duì)應(yīng)關(guān)系也相同,∴是同一函數(shù);
對(duì)于B:y=x的定義域?yàn)镽,y=$\frac{{x}^{2}}{x}$的定義域中{x∈R|x≠0},∴不是同一函數(shù);
對(duì)于C:f(x)=$\sqrt{1+x}$-$\sqrt{x-1}$的定義域?yàn)閧x|-1≤x≤1},而y=$\sqrt{{x}^{2}-1}$的定義域?yàn)閧x|x≥1或x≤-1},∴不是同一函數(shù);
對(duì)于D:f(x)=$\sqrt{(3-x)^{2}}$=|3-x|的定義域?yàn)镽,值域?yàn)閧y|y≥0},而y=x-3的定義域和值域?yàn)镽,∴不是同一函數(shù);
故選A.
點(diǎn)評(píng) 本題考查了判斷兩個(gè)函數(shù)是否為同一函數(shù)的問題,是基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,0) | B. | $(\frac{π}{3},0)$ | C. | $(\frac{π}{6},0)$ | D. | $(\frac{π}{9},0)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (x-5)2+(y-3)2=18 | B. | (x-5)2+(y-3)2=9 | C. | (x-3)2+(y-5)2=18 | D. | (x-3)2+(y-5)2=9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
$\overline{x}$ | $\overline{y}$ | $\overline{w}$ | $\sum_{i=1}^{8}$(xi-$\overline{x}$)2 | $\sum_{i=1}^{8}$(wi-$\overline{w}$)2 | $\sum_{i=1}^{8}$(xi-$\overline{x}$)(yi-$\overline{y}$) | $\sum_{i=1}^{8}$(wi-$\overline{w}$)(yi-$\overline{y}$) |
46.6 | 56.3 | 6.8 | 289.8 | 1.6 | 1469 | 108.8 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com