15.方程$\frac{x|x|}{16}$+$\frac{y|y|}{9}$=-1的曲線即為函數(shù)y=f(x)的圖象,對于函數(shù)y=f(x),有如下結(jié)論:
①f(x)在R上單調(diào)遞減;
②函數(shù)F(x)=4f(x)+3x存在零點(diǎn); 
③函數(shù)y=f(x)的值域是R; 
④f(x)的圖象不經(jīng)過第一象限;
其中正確的命題序號為①③④.

分析 先根據(jù)題意畫出方程$\frac{x|x|}{16}$+$\frac{y|y|}{9}$=-1的曲線即為函數(shù)y=f(x)的圖象,如圖所示.軌跡是兩段雙曲線的一部分加上一段的橢圓圓弧組成的圖形.從圖形中可以看出,關(guān)于函數(shù)y=f(x)的結(jié)論的正確性.

解答 解:根據(jù)題意畫出方程$\frac{x|x|}{16}$+$\frac{y|y|}{9}$=-1的曲線即為函數(shù)y=f(x)的圖象,如圖所示.軌跡是兩段雙曲線的一部分加上一段的橢圓圓弧組成的圖形.

從圖形中可以看出,關(guān)于函數(shù)y=f(x)的有下列說法:
①f(x)在R上單調(diào)遞減;正確.
②由于4f(x)+3x=0即f(x)=-$\frac{3x}{4}$,從而圖形上看,函數(shù)f(x)的圖象與直線y=-$\frac{3x}{4}$沒有交點(diǎn),故函數(shù)F(x)=4f(x)+3x不存在零點(diǎn);不正確.
③函數(shù)y=f(x)的值域是R;正確.
④f(x)的圖象不經(jīng)過第一象限,正確.
故答案為:①③④.

點(diǎn)評 本小題主要考查命題的真假判斷與應(yīng)用、函數(shù)單調(diào)性的應(yīng)用、圓錐曲線的應(yīng)用等基礎(chǔ)知識,考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想.屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知二次函數(shù)f(x)滿足f(2x)+f(x+1)=5x2-x+4;
(1)求f(x)的解析式;
(2)若方程f(x)+m=3x-1在區(qū)間(0,3)上總有兩個不相等的實(shí)數(shù)根,求m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)A、B是拋物線y2=2x上異于原點(diǎn)的不同兩點(diǎn),則$\overrightarrow{OA}•\overrightarrow{OB}$的最小值為( 。
A.1B.-1C.-2D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若三角形的三邊均是正整數(shù),其中一邊長為5,另外兩邊的長分別為b,c,且滿足b≤5≤c,則這樣的三角形共有( 。
A.10個B.14個C.15個D.21個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列說法正確的是(  )
A.“a+5是無理數(shù)”是“a是無理數(shù)”的充分不必要條件
B.“|a|>|b|”是“a2>b2”的必要不充分條件
C.命題“若a∈M,則b∉M”的否命題是“若a∉M,則b∈M”
D.命題“若a、b都是奇數(shù),則a+b是偶數(shù)”的逆否命題是“若a+b不是偶數(shù),則a、b都不是奇數(shù)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)y=cos(x+φ)(-$\frac{π}{2}$<φ≤$\frac{π}{2}$)的圖象向右平移$\frac{π}{4}$個單位后,與函數(shù)y=sin(x+$\frac{π}{3}$)的圖象重合,則φ=( 。
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.如圖,用4種不同顏色給圖中的A、B、C、D四個區(qū)域涂色,規(guī)定一個區(qū)域只涂一種顏色,相鄰區(qū)域必須涂不同的顏色,則不同的涂色方案有84種(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.不等式|x+2|≤5的解集是( 。
A.{x|x≤1或x≥2}B.{x|-7≤x≤3}C.{x|-3≤x≤7}D.{x|-5≤x≤9}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若a=${∫}_{0}^{1}$x${\;}^{\frac{1}{3}}$dx,b=${∫}_{0}^{1}$$\sqrt{x}$dx,c=${∫}_{0}^{1}$sinxdx,則a,b,c的大小關(guān)系為(  )
A.a>c>bB.b>c>aC.c<a<bD.c<b<a

查看答案和解析>>

同步練習(xí)冊答案