設(shè)函數(shù)
(1)試問函數(shù)能否在處取得極值,請說明理由;
(2)若,當(dāng)時(shí),函數(shù)的圖像有兩個(gè)公共點(diǎn),求的取值范圍.

(1)函數(shù)不能在處取得極值,理由詳見試題解析;
(2)的取值范圍是.

解析試題分析:(1)先對函數(shù)求導(dǎo),因?yàn)楹瘮?shù)在實(shí)數(shù)上單調(diào)遞增,故函數(shù)不可再
 處取得極值.
(2)函數(shù)的圖像在有兩個(gè)公共點(diǎn),即方程有兩解,結(jié)合函數(shù)的單調(diào)性可求的取值范圍.
(1),當(dāng)時(shí),,
而此時(shí),函數(shù)在實(shí)數(shù)上單調(diào)遞增,故函數(shù)不可再
 處取得極值.
(2)當(dāng)時(shí),,函數(shù)的圖像在有兩個(gè)公共點(diǎn),即方程有兩解,
方程可轉(zhuǎn)化為,設(shè),
,令
解得,所以函數(shù)在遞增,在上遞減.
,所以要使得方程有兩解需
 .
考點(diǎn):導(dǎo)函數(shù)的綜合應(yīng)用、構(gòu)造思想、轉(zhuǎn)化與化歸思想.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)當(dāng)a=l時(shí),求的單調(diào)區(qū)間;
(2)若函數(shù)上是減函數(shù),求實(shí)數(shù)a的取值范圍;
(3)令,是否存在實(shí)數(shù)a,當(dāng)(e是自然對數(shù)的底數(shù))時(shí),函數(shù)g(x)最小值是3,若存在,求出a的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)(為常數(shù),是自然對數(shù)的底數(shù)),曲線在點(diǎn)處的切線與軸平行.
(Ⅰ)求的值;
(Ⅱ)求的單調(diào)區(qū)間;
(Ⅲ)設(shè),其中的導(dǎo)函數(shù).證明:對任意

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=x3-ax+1.
(1)求x=1時(shí),f(x)取得極值,求a的值;
(2)求f(x)在[0,1]上的最小值;
(3)若對任意m∈R,直線y=-x+m都不是曲線y=f(x)的切線,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)試判斷函數(shù)的單調(diào)性,并說明理由;
(2)若恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)
(1)若函數(shù)上為減函數(shù),求實(shí)數(shù)的最小值;
(2)若存在,使成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)當(dāng) 時(shí),求處的切線方程;
(2)設(shè)函數(shù),
(ⅰ)若函數(shù)有且僅有一個(gè)零點(diǎn)時(shí),求的值;
(ⅱ)在(。┑臈l件下,若,,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某公司經(jīng)銷某種產(chǎn)品,每件產(chǎn)品的成本為6元,預(yù)計(jì)當(dāng)每件產(chǎn)品的售價(jià)為元()時(shí),一年的銷售量為萬件。
(1)求公司一年的利潤y(萬元)與每件產(chǎn)品的售價(jià)x的函數(shù)關(guān)系;
(2)當(dāng)每件產(chǎn)品的售價(jià)為多少時(shí),公司的一年的利潤y最大,求出y最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),函數(shù)
⑴當(dāng)時(shí),求函數(shù)的表達(dá)式;
⑵若,函數(shù)上的最小值是2 ,求的值;

查看答案和解析>>

同步練習(xí)冊答案