【題目】平面直角坐標(biāo)系中,已知橢圓()的左焦點(diǎn)為,離心率為,過點(diǎn)且垂直于長(zhǎng)軸的弦長(zhǎng)為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn)分別是橢圓的左、右頂點(diǎn),若過點(diǎn)的直線與橢圓相交于不同兩點(diǎn)、.
①求證:;
②求面積的最大值.
【答案】(1) (2) ①見解析②面積的最大值是
【解析】試題分析:(1)根據(jù)題意得,,又,即可得方程;
(2)①當(dāng)時(shí),顯然,滿足題意;當(dāng)時(shí),設(shè),,直線方程為,代入橢圓方程,整理得,由,結(jié)合韋達(dá)定理即可得解;
②由結(jié)合韋達(dá)定理得,利用均值不等式求最值即可.
試題解析:
(1)由題意可得,
令,可得,即有,
又,所以,.
所以橢圓的標(biāo)準(zhǔn)方程為;
(2)①當(dāng)時(shí),顯然,滿足題意;
當(dāng)時(shí),設(shè),,直線方程為,
代入橢圓方程,整理得,
則,所以.
,
則
.
則,即;
②
當(dāng)且僅當(dāng),即.(此時(shí)適合的條件)取得等號(hào).
則面積的最大值是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《漢字聽寫大會(huì)》不斷創(chuàng)收視新高,為了避免“書寫危機(jī)”弘揚(yáng)傳統(tǒng)文化,某市大約10萬(wàn)名市民進(jìn)行了漢字聽寫測(cè)試.現(xiàn)從某社區(qū)居民中隨機(jī)抽取50名市民的聽寫測(cè)試情況,發(fā)現(xiàn)被測(cè)試市民正確書寫漢字的個(gè)數(shù)全部在到之間,將測(cè)試結(jié)果按如下方式分成六組:第一組,第二組,…,第六組,如圖是按上述分組方法得到的頻率分布直方圖.
(1)若電視臺(tái)記者要從抽取的市民中選1人進(jìn)行采訪,求被采訪人恰好在第1組或第4組的概率;
(2)已知第5,6兩組市民中有3名女性,組織方要從第5,6兩組中隨機(jī)抽取2名市民組成弘揚(yáng)傳統(tǒng)文化宣傳隊(duì),求至少有1名女性市民的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的下頂點(diǎn)為,右頂點(diǎn)為,離心率,拋物線的焦點(diǎn)為,是拋物線上一點(diǎn),拋物線在點(diǎn)處的切線為,且.
(1)求直線的方程;
(2)若與橢圓相交于,兩點(diǎn),且,求的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,墻上有一壁畫,最高點(diǎn)離地面4米,最低點(diǎn)離地面2米,觀察者從距離墻米,離地面高米的處觀賞該壁畫,設(shè)觀賞視角
(1)若問:觀察者離墻多遠(yuǎn)時(shí),視角最大?
(2)若當(dāng)變化時(shí),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的兩個(gè)焦點(diǎn)為,,離心率.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓交于,兩點(diǎn),線段的垂直平分線交軸于點(diǎn),當(dāng)變化時(shí),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】直角三角形中,是的中點(diǎn),是線段上一個(gè)動(dòng)點(diǎn),且,如圖所示,沿將翻折至,使得平面平面.
(1)當(dāng)時(shí),證明:平面;
(2)是否存在,使得與平面所成的角的正弦值是?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)(其中).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時(shí),討論函數(shù)的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知橢圓的離心率為,且過點(diǎn).
(1)求的方程;
(2)若動(dòng)點(diǎn)在直線上,過作直線交橢圓于兩點(diǎn),使得,再過作直線,證明:直線恒過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知.
(1)若函數(shù)的圖象在點(diǎn)處的切線平行于直線,求的值;
(2)討論函數(shù)在定義域上的單調(diào)性;
(3)若函數(shù)在上的最小值為,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com