【題目】已知.
(1)若函數(shù)的圖象在點處的切線平行于直線,求的值;
(2)討論函數(shù)在定義域上的單調(diào)性;
(3)若函數(shù)在上的最小值為,求的值.
【答案】(1)(2)時,在為增函數(shù);時,減區(qū)間為,增區(qū)間為(3)
【解析】試題分析:(1)由導數(shù)的幾何意義可求得切線的斜率,從而得到關(guān)于a的方程,求得其值;(2)確定函數(shù)的定義域,根據(jù)f′(x)>0,可得f(x)在定義域上的單調(diào)性;(3)求導函數(shù),分類討論,確定函數(shù)f(x)在[1,e]上的單調(diào)性,利用f(x)在[1,e]上的最小值為,即可求a的值
試題解析:(1)
由題意可知,故
(2)
當時,因為,,故在為增函數(shù);
當時,由;由,
所以增區(qū)間為,減區(qū)間為,
綜上所述,當時,在為增函數(shù);當時,的減區(qū)間為,增區(qū)間為.
(3)由(2)可知,當時,函數(shù)在上單調(diào)遞增,
故有,所以不合題意,舍去.
當時,的減區(qū)間為,增區(qū)間為.
若,則函數(shù)在上單調(diào)遞減,
則不合題意,舍去.
若時,函數(shù)在上單調(diào)遞增,
,所以不合題意,舍去.
若時,,
解得,
綜上所述,.
科目:高中數(shù)學 來源: 題型:
【題目】平面直角坐標系中,已知橢圓()的左焦點為,離心率為,過點且垂直于長軸的弦長為.
(1)求橢圓的標準方程;
(2)設點分別是橢圓的左、右頂點,若過點的直線與橢圓相交于不同兩點、.
①求證:;
②求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(Ⅰ)函數(shù)的圖象與的圖象無公共點,求實數(shù)的取值范圍;
(Ⅱ)是否存在實數(shù),使得對任意的,都有函數(shù)的圖象在的圖象的下方?若存在,請求出整數(shù)的最大值;若不存在,請說理由.
(參考數(shù)據(jù):,,).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,圓的參數(shù)方程為,(t為參數(shù)),在以原點O為極點,軸的非負半軸為極軸建立的極坐標系中,直線的極坐標方程為,兩點的極坐標分別為.
(1)求圓的普通方程和直線的直角坐標方程;
(2)點是圓上任一點,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(其中為參數(shù)),曲線,以坐標原點為極點,以軸正半軸為極軸建立極坐標系.
(1)求曲線的普通方程和曲線的極坐標方程;
(2)若射線與曲線,分別交于兩點,求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】【2018湖南(長郡中學、株洲市第二中學)、江西(九江一中)等十四校高三第一次聯(lián)考】已知函數(shù)(其中且為常數(shù), 為自然對數(shù)的底數(shù), ).
(Ⅰ)若函數(shù)的極值點只有一個,求實數(shù)的取值范圍;
(Ⅱ)當時,若(其中)恒成立,求的最小值的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】【2018山西太原市高三3月模擬】已知橢圓的左、右頂點分別為,右焦點為,點在橢圓上.
(I)求橢圓方程;
(II)若直線與橢圓交于兩點,已知直線與相交于點,證明:點在定直線上,并求出定直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某小店每天以每份5元的價格從食品廠購進若干份食品,然后以每份10元的價格出售.如果當天賣不完,剩下的食品還可以每份1元的價格退回食品廠處理.
(Ⅰ)若小店一天購進16份,求當天的利潤(單位:元)關(guān)于當天需求量(單位:份,)的函數(shù)解析式;
(Ⅱ)小店記錄了100天這種食品的日需求量(單位:份),整理得下表:
日需求量 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
頻數(shù) | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率.
(i)小店一天購進16份這種食品,表示當天的利潤(單位:元),求的分布列及數(shù)學期望;
(ii)以小店當天利潤的期望值為決策依據(jù),你認為一天應購進食品16份還是17份?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),是常數(shù).
(Ⅰ)求曲線在點處的切線方程,并證明對任意,切線經(jīng)過定點;
(Ⅱ)當時,設,是的兩個正的零點,求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com