11.如果點(diǎn)P在平面區(qū)域$\left\{\begin{array}{l}{2x-y+2≥0}\\{x+y-2≥0}\\{x-3≤0}\end{array}\right.$,點(diǎn)Q在曲線x2+(y+2)2=1上,那么|PQ|的最小值為( 。
A.$\frac{4}{\sqrt{5}}$-1B.2$\sqrt{2}$-1C.2D.$\sqrt{10}$-1

分析 畫出平面區(qū)域以及Q在的曲線,利用圓上的點(diǎn)到區(qū)域內(nèi)點(diǎn)的距離求最小值.

解答 解:P所在的平面區(qū)域如圖:過圓心(0,-2)作直線x+y-2=0的垂線,垂直為Q,與圓交于P,則|PQ|所求,
由點(diǎn)到直線的距離得到|PQ|=$\frac{|-2-2|}{\sqrt{2}}-1=2\sqrt{2}-1$;
故選B.

點(diǎn)評 本題考查了簡單線性規(guī)劃問題,求線段長度的最小值,關(guān)鍵|PQ|的幾何意義得到最小值的位置.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知m≠0,向量$\overrightarrow a$=(m,3m),向量$\overrightarrow b$=(m+1,6),集合A={x|(x-m2)(x+m-2)=0}.
(1)判斷“$\overrightarrow a$∥$\overrightarrow b$”是“|${\overrightarrow a}$|=$\sqrt{10}$”的什么條件
(2)設(shè)命題p:若$\overrightarrow a$⊥$\overrightarrow b$,則m=-19,命題q:若集合A的子集個(gè)數(shù)為2,則m=1,判斷p∨q,p∧q,¬q的真假,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知偶函數(shù)f(x)在區(qū)間[0,+∞)上單調(diào)遞增,則滿足f(x)<f(3)的x的取值范圍是(-3,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.求值:
(1)cos(-420°)
(2)$sin(-\frac{π}{6})$
(3)$sin(-\frac{31π}{4})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知集合A={1,3,x2},B={x+2,1},若B⊆A,求實(shí)數(shù)x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上一點(diǎn)A關(guān)于原點(diǎn)的對稱點(diǎn)為B,F(xiàn)為其右焦點(diǎn),若AF⊥BF,且∠ABF=$\frac{π}{4}$,則橢圓的離心率為$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)f(x)=$\left\{\begin{array}{l}{\sqrt{x},x>0}\\{-{x}^{2}+4x,x≤0}\end{array}\right.$,若|f(x)|≥ax-1恒成立,則實(shí)數(shù)a的取值范圍是[-6,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知M={0,x},N={1,2},若M∩N={1},則M∪N=( 。
A.{0,x,1,2}B.{1,2,0,1}C.{0,1,2}D.無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知扇形的周長為10cm,面積為4cm2,則扇形的圓心角為$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊答案