二次函數(shù)y=ax2+bx+c與x軸的兩個交點(diǎn)為(-2,0)(2,0)則不等式ax2+bx+c>0的解集為(  )
A、(-2,2)
B、(-∞,-2)∪(2,+∞)
C、{x|x≠±2}
D、與a符號有關(guān)
考點(diǎn):一元二次不等式的解法,二次函數(shù)的性質(zhì)
專題:不等式的解法及應(yīng)用
分析:根據(jù)二次函數(shù)的圖象和題意,需要對a進(jìn)行分類討論求出不等式ax2+bx+c>0的解集,再選出正確答案.
解答: 解:因為二次函數(shù)y=ax2+bx+c與x軸的兩個交點(diǎn)為(-2,0)(2,0),
所以當(dāng)a>0時,不等式ax2+bx+c>0的解集為(-∞,-2)∪(2,+∞),
當(dāng)a<0時,不等式ax2+bx+c>0的解集為(-2,2),
即不等式ax2+bx+c>0的解集與a的符號有關(guān),
故選:D.
點(diǎn)評:本題考查一元二次不等式的解法,以及分類討論思想,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,A=120°,AB=5,BC=7,則
sinB
sinC
的值為( 。
A、
3
5
B、
5
3
C、
5
8
D、
8
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
-x+3-3a,x<0
ax,x≥0
(a>0且a≠1)是(-∞,+∞)上的減函數(shù),則a的取值范圍是( 。
A、(1,+∞)
B、(0,
2
3
]
C、[
2
3
,1)
D、(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
|x-1|-2(|x|≤1)
1
1+x2
(|x|>1)

(1)求函數(shù)f(x)的定義域;
(2)求f[f(
1
2
)]的值;
(3)若f(x)=
1
3
,求相應(yīng)的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a>0,不等式-c<ax+b<c的解集是{x|-2<x<1},則a:b:c=( 。
A、1:2:3
B、2:1:3
C、3:1:2
D、3:2:1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0),離心率為
1
2
,A1,A2是橢圓長軸的端點(diǎn),長軸長為4,橢圓外一點(diǎn)M在直線x=-4上動,直線MA1與橢圓的另一交點(diǎn)為P,直線MA2與橢圓的另一交點(diǎn)為Q.
(1)求證:直線PQ過定點(diǎn)R,并求出R點(diǎn)坐標(biāo);
(2)R點(diǎn)關(guān)于y軸的對稱點(diǎn)為S,直線QS與橢圓的另一交點(diǎn)為T,設(shè)
QR
RP
,
QS
ST
,求證:λ+μ為定值,并求出這個定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

畫圖象并寫出定義域,值域,單調(diào)性,奇偶性.
(1)y=x2+2;
(2)y=|x-3|;
(2)y=2|x+1|-1;
(4)y=log3|x+2|+2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某次數(shù)學(xué)考試共有8道選擇題,每道選擇題有4個選項,其中有且只有一個選項是正確的.某考生有4道題已選對正確答案,還有兩道題能準(zhǔn)確排除每題中的2個錯誤選項,其余兩道題完全不會只好隨機(jī)猜答.
(Ⅰ)求該考生8道題全答對的概率;
(Ⅱ)若評分標(biāo)準(zhǔn)規(guī)定:“每題只選一個選項,選對得5分,不選或選錯得0分”,求該考生所得分?jǐn)?shù)的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,a+b成等差數(shù)列,a,b,ab成等比數(shù)列,且0<logm(ab)<1,則m的取值范圍是( 。
A、(-∞,8)
B、(1,8)
C、(0,1)∪(1,8)
D、(8,+∞)

查看答案和解析>>

同步練習(xí)冊答案