2.若$\overrightarrow{m}$=(cosα+sinα,2015),$\overrightarrow{n}$=(cosα-sinα,1).且$\overrightarrow{m}$∥$\overrightarrow{n}$,則$\frac{1}{cos2α}+tan2α$=2015.

分析 利用向量共線定理、同角三角函數(shù)基本關(guān)系式及其倍角公式即可得出.

解答 解:∵$\overrightarrow{m}$∥$\overrightarrow{n}$,
∴cosα+sinα=2015(cosα-sinα).
化為:tanα=$\frac{1007}{1008}$.
則$\frac{1}{cos2α}+tan2α$=$\frac{1+sin2α}{cos2α}$=$\frac{(cosα+sinα)^{2}}{co{s}^{2}α-si{n}^{2}α}$=$\frac{cosα+sinα}{cosα-sinα}$=$\frac{1+tanα}{1-tanα}$=$\frac{1+\frac{1007}{1008}}{1-\frac{1007}{1008}}$=2015.
故答案為:2015.

點評 本題考查了向量共線定理、同角三角函數(shù)基本關(guān)系式及其倍角公式,考查了推理能力與技能數(shù)列,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

12.解不等式|x-2|+|x-3|≥5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知x>y>z>1,log2($\frac{x}{z}$)•[log${\;}_{(\frac{x}{y})}$2+log${\;}_{(\frac{y}{z})}$16]=9,則( 。
A.y3=x2zB.y3=xz2C.y2=xzD.2y3=3xz2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.設(shè)向量$\overrightarrow{a}$=(2,5),$\overrightarrow$=(0,1),則$\overrightarrow{a}$•($\overrightarrow{a}$+$\overrightarrow$)等于( 。
A.31B.32C.33D.34

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.設(shè)$\overrightarrow{a}$•$\overrightarrow$=4,若$\overrightarrow{a}$在$\overrightarrow$方向上的投影為2,且$\overrightarrow$在$\overrightarrow{a}$方向上的投影為1,則|3$\overrightarrow{a}$-$\overrightarrow$|等于( 。
A.2$\sqrt{31}$B.2$\sqrt{30}$C.10D.9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.如圖,在長方體ABCD-A1B1C1D1中,AA1=AD=a,AB=2a,E為C1D1的中點.
(1)求證:DE⊥平面BEC;
(2)求三棱錐C-BED的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.過雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\;(a>0,b>0)$的右焦點F2作斜率為-1的直線,該直線與雙曲線的兩條漸近線的交點分別為A,B.若$\overrightarrow{{F}_{2}A}$=3$\overrightarrow{AB}$,則雙曲線的漸近線方程為y=±7x.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.在平面直角坐標系xOy中,點$A(cosθ,\sqrt{2}sinθ),B(sinθ,0)$,其中θ∈R.
(1)當θ∈[0,$\frac{π}{2}$]時,求|$\overrightarrow{AB}$|的最大值.
(2)當$θ∈[{0,\frac{π}{2}}]$,|$\overrightarrow{AB}$|=$\sqrt{\frac{5}{2}}$時,求$sin(2θ+\frac{5π}{12})$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知i是虛數(shù)單位,若1+i=z(1-i),則z=( 。
A.-1B.1C.-iD.i

查看答案和解析>>

同步練習冊答案