A. | $(-\frac{1}{2},0)$ | B. | $(0,\frac{ln2+1}{4})$ | C. | $(\frac{1}{2},1)$ | D. | $(\frac{ln2+1}{4},\frac{1}{2})$ |
分析 方法一:求導(dǎo)f′(x)=lnx-2ax+1,由關(guān)于x的方程a=$\frac{lnx+1}{2x}$在區(qū)間(0,+∞)由兩個(gè)不相等的實(shí)根,構(gòu)造輔助函數(shù),根據(jù)函數(shù)單調(diào)性即可求得a取值范圍;
方法二:由題意,關(guān)于x的方程2ax=lnx+1在區(qū)間(0,2)由兩個(gè)不相等的實(shí)根,則y=2ax與y=lnx+1有兩個(gè)交點(diǎn),根據(jù)導(dǎo)數(shù)的幾何意義,即可求得a的取值范圍.
解答 解:方法一:f(x)=x(lnx-ax),求導(dǎo)f′(x)=lnx-2ax+1,
由題意,關(guān)于x的方程a=$\frac{lnx+1}{2x}$在區(qū)間(0,+∞)由兩個(gè)不相等的實(shí)根,
令h(x)=$\frac{lnx+1}{2x}$,h′(x)=-$\frac{2lnx}{4{x}^{2}}$,
當(dāng)x∈(0,1)時(shí),h(x)單調(diào)遞增,當(dāng)x∈(1,+∞)單調(diào)遞減,
當(dāng)x→+∞時(shí),h(x)→0,
由圖象可知:函數(shù)f(x)=x(lnx-ax),在(0,2)上由兩個(gè)極值,
只需$\frac{ln2+1}{4}$<a<$\frac{1}{2}$,
故D.
方法二:f(x)=x(lnx-ax),求導(dǎo)f′(x)=lnx-2ax+1,
由題意,關(guān)于x的方程2ax=lnx+1在區(qū)間(0,2)由兩個(gè)不相等的實(shí)根,
則y=2ax與y=lnx+1有兩個(gè)交點(diǎn),
由直線y=lnx+1,求導(dǎo)y′=$\frac{1}{x}$,
設(shè)切點(diǎn)(x0,y0),$\frac{ln{x}_{0}+1}{{x}_{0}}$=$\frac{1}{{x}_{0}}$,解得:x0=1,
∴切線的斜率k=1,
則2a=1,a=$\frac{1}{2}$,
則當(dāng)x=2,則直線斜率k=$\frac{ln2+1}{2}$,
則a=$\frac{ln2+1}{4}$,
∴a的取值范圍($\frac{ln2+1}{4}$,$\frac{1}{2}$),
故選D.
點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的綜合應(yīng)用,考查導(dǎo)數(shù)與函數(shù)單調(diào)性及應(yīng)用,考查數(shù)形結(jié)合思想,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\frac{3}{5}$ | C. | $\frac{1}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
日需求量 | 3 | 4 | 5 | 6 | 7 |
頻數(shù) | 2 | 3 | 15 | 6 | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{6}$ | D. | $\frac{1}{12}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com