若x∈N+,判斷下列函數(shù)是否是正整數(shù)指數(shù)函數(shù),若是,指出其單調(diào)性.
(1)y=(-
59
x;
(2)y=x4
(3)y=
2x
5

(4)y=( 
9
7
4
x;
(5)y=(π-3)x
考點(diǎn):指數(shù)函數(shù)的圖像與性質(zhì),指數(shù)函數(shù)的定義、解析式、定義域和值域
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:分別根據(jù)正整數(shù)的指數(shù)函數(shù)的定義和性質(zhì)加以判斷即可.
解答: 解:對(duì)于(1),因?yàn)椋?
59
)<0,所以y=(-
59
x不是正整數(shù)指數(shù)函數(shù),
對(duì)于(2)y=x4是冪函數(shù),不是指數(shù)函數(shù),
對(duì)于(3)y=
2x
5
=
1
5
•2x,因?yàn)?x前的系數(shù)不是1,所以y=
2x
5
不是正整數(shù)指數(shù)函數(shù);
對(duì)于(4)是正整數(shù)指數(shù)函數(shù);因?yàn)閥=(
9
7
4
x的底數(shù)是大于1的常數(shù),所以是增函數(shù),
對(duì)于(5)是正整數(shù)指數(shù)函數(shù);因?yàn)閥=(π-3)x的底數(shù)是大于0,小于1的常數(shù),所以是減函數(shù),
點(diǎn)評(píng):本題考查指數(shù)函數(shù)的定義及解析式,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列四個(gè)函數(shù)中在(0,+∞)上為增函數(shù)的是(  )
A、f(x)=3-x
B、f(x)=(x-1)2
C、f(x)=
1
x
D、f(x)=(
1
2
-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=3x+3-x
(1)判斷函數(shù)的奇偶性;
(2)求函數(shù)的單調(diào)增區(qū)間,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在梯形ABCD中,AB∥CD,AB=6,CD=3,E為AB的中點(diǎn),F(xiàn)為CD上靠近點(diǎn)D的三等分點(diǎn),且EF⊥AB,EF=2,現(xiàn)將梯形沿著EF翻折,使得平面BCFE⊥平面AEFD,連接BD、BA和CD,如圖所示.

(1)求三棱錐E-ABD的體積;
(2)在BD上是否存在一點(diǎn)P,使得CP∥平面AEFD?如果存在,求DP的長(zhǎng);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若方程x2-2ax+a=0在(0,1)恰有一個(gè)解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|-3≤x≤4},B={x|2m-1≤x≤m+1},當(dāng)B?A,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
2
xlnx2,g(x)=-x2+|a|x-3

(1)求函數(shù)f(x)在[t,t+2](t>0)上的最小值;
(2)對(duì)一切x∈(0,+∞),f(x)≥
1
2
g(x)
恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

當(dāng)非空集合S⊆N*,且滿足命題“如果x∈S,則8-x∈S”時(shí),回答下列問(wèn)題.
(1)試寫(xiě)出只有一個(gè)元素的集合S;
(2)試寫(xiě)出元素個(gè)數(shù)為2的S的全部;
(3)滿足上述條件的集合S總共有幾個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x-1-alnx,a>0.
(Ⅰ)若對(duì)任意x∈(0,+∞),都有f(x)≥0恒成立,求實(shí)數(shù)a的取值集合;
(Ⅱ)證明:(1+
1
n
n<e<(1+
1
n
n+1(其中n∈N *,e為自然對(duì)數(shù)的底數(shù)).

查看答案和解析>>

同步練習(xí)冊(cè)答案