17.已知變量x,y滿足約束條件$\left\{\begin{array}{l}{x-y≤2}\\{x+y≤4}\\{x≥1}\end{array}\right.$,則$\frac{y}{x}$的最大值為( 。
A.$\frac{1}{3}$B.1C.3D.4

分析 畫出滿足條件的平面區(qū)域,求出A的坐標(biāo),結(jié)合$\frac{y}{x}$的幾何意義,求出其最大值即可.

解答 解:畫出變量x,y滿足約束條件$\left\{\begin{array}{l}{x-y≤2}\\{x+y≤4}\\{x≥1}\end{array}\right.$的平面區(qū)域,
如圖示:
由$\left\{\begin{array}{l}{x=1}\\{x+y=4}\end{array}\right.$,解得A(1,3),
而$\frac{y}{x}$的幾何意義表示過平面區(qū)域內(nèi)的點(diǎn)與原點(diǎn)的直線的斜率,
由圖象得直線過OA時(shí)斜率最大,
∴($\frac{y}{x}$)max=$\frac{3}{1}$=3.
故選:C.

點(diǎn)評(píng) 本題考查了簡(jiǎn)單的線性規(guī)劃問題,考查數(shù)形結(jié)合思想,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<$\frac{π}{2}$)的圖象(部分)如圖所示,則f(x)的解析式是( 。
A.f(x)=2sin(πx+$\frac{π}{6}$)B.f(x)=2sin(2πx+$\frac{π}{6}$)C.f(x)=2sin(πx+$\frac{π}{3}$)D.f(x)=2sin(2πx+$\frac{π}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.一個(gè)三棱錐的頂點(diǎn)在空間直角坐標(biāo)系中的坐標(biāo)O-xyz分別為(0,0,2),(2,2,0),(1,2,1),(2,2,2),畫出該三棱錐三視圖中的俯視圖時(shí),以xoy平面為投影面,得到的俯視圖為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.血藥濃度(Plasma Concentration)是指藥物吸收后在血漿內(nèi)的總濃度.藥物在人體內(nèi)發(fā)揮治療作用時(shí),該藥物的血藥濃度應(yīng)介于最低有效濃度和最低中毒濃度之間.已知成人單次服用1單位某藥物后,體內(nèi)血藥濃度及相關(guān)信息如圖所示:

根據(jù)圖中提供的信息,下列關(guān)于成人使用該藥物的說法中,不正確的個(gè)數(shù)是(  )
①首次服用該藥物1單位約10分鐘后,藥物發(fā)揮治療作用
②每次服用該藥物1單位,兩次服藥間隔小于2小時(shí),一定會(huì)產(chǎn)生藥物中毒
③每間隔5.5小時(shí)服用該藥物1單位,可使藥物持續(xù)發(fā)揮治療作用
④首次服用該藥物1單位3小時(shí)后,再次服用該藥物1單位,不會(huì)發(fā)生藥物中毒.
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=\sqrt{2}cosα}\\{y=sinα}\end{array}\right.$(α為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρsin(θ+$\frac{π}{4}$)=4$\sqrt{2}$.
(1)求曲線C的普通方程與直線l的直角坐標(biāo)方程;
(2)設(shè)P為曲線C上的動(dòng)點(diǎn),求點(diǎn)P到直線l的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知復(fù)數(shù)z=$\frac{3-4i}{1-2i}$,則復(fù)數(shù)z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知等差數(shù)列{an}的前n(n∈N*)項(xiàng)和為Sn,a3=3,且λSn=anan+1,在等比數(shù)列{bn}中,b1=2λ,b3=a15+1.
(Ⅰ)求數(shù)列{an}及{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{cn}的前n(n∈N*)項(xiàng)和為Tn,且$({S_n}+\frac{n}{2}){c_n}=1$,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.定義在R上奇函數(shù)f(x),當(dāng)x≥0時(shí),f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(x+1),x∈[0,3)}\\{2|x-5|-2,x∈[3,+∞)}\end{array}\right.$,則關(guān)于x的函數(shù)g(x)=f(x)+a(0<a<2)的所有零點(diǎn)之和為( 。
A.10B.1-2aC.0D.21-2a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)P為曲線C1上動(dòng)點(diǎn),Q為曲線C2上動(dòng)點(diǎn),則稱|PQ|的最小值為曲線C1,C2之間的距離,記作d(C1,C2).若C1:x2+y2=2,C2:(x-3)2+(y-3)2=2,則d(C1,C2)=$\sqrt{2}$;若C3:ex-2y=0,C4:lnx+ln2=y,則d(C3,C4)=$\sqrt{2}$(1-ln2).

查看答案和解析>>

同步練習(xí)冊(cè)答案