分析 (1)分類討論解不等式,即可得出結論;
(2)x∈(1,+∞)時,f(x)<0,即x-1<|2x+m|,即可求m的取值范圍.
解答 解:(1)當m=-4時,f(x)=|x-1|-|2x-4|,
x<1時,不等式可化為1-x+2x-4<0,∴x<3,∴x<1;
1≤x≤2時,不等式可化為x-1+2x-4<0,∴x<$\frac{5}{3}$,∴1≤x<$\frac{5}{3}$,
x>2時,不等式可化為x-1+4-2x<0,∴x>3,∴x>3,
綜上所述,不等式的解集為{x|x<$\frac{5}{3}$或x>3};
(2)x∈(1,+∞)時,f(x)<0,即x-1<|2x+m|,
∴m>-x-1或m<1-3x,
∴m≥-2.
點評 本題主要考查帶由絕對值的函數(shù),絕對值不等式的解法,體現(xiàn)了轉化、分類討論的數(shù)學思想,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3 | B. | 6 | C. | 8 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | c>b>a | B. | b>c>a | C. | c>a>b | D. | a>b>c |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com