4.已知A是△ABC的內(nèi)角,且sinA+cosA=-$\frac{7}{13}$,求tan($\frac{π}{4}$+A)的值.

分析 由條件利用同角三角函數(shù)的基本關(guān)系求得sinA、cosA、tanA的值,從而求得tan($\frac{π}{4}$+A)的值.

解答 解:由$sinA+cosA=-\frac{7}{13}…(1)$,
得${(sinA+cosA)^2}=1+2sinAcosA=\frac{49}{169}⇒2sinAcosA=-\frac{120}{169}$,
則${(sinA-cosA)^2}=1-2sinAcosA=\frac{289}{169}$,
又A是△ABC的內(nèi)角且sinA cosA<0,則A為鈍角.
則$sinA-cosA=\frac{17}{13}…(2)$,
由(1)和(2)得$sinA=\frac{5}{13},cosA=-\frac{12}{13},tanA=-\frac{5}{12}$,
則$tan(\frac{π}{4}+A)=\frac{{tan\frac{π}{4}+tanA}}{{1-tan\frac{π}{4}tanA}}=\frac{{1-\frac{5}{12}}}{{1+\frac{5}{12}}}=\frac{7}{17}$.

點(diǎn)評(píng) 本題主要考查同角三角函數(shù)的基本關(guān)系、兩角和的正切公式的應(yīng)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若直線y=ax+b通過(guò)第一、二、四象限,則圓(x+a)2+(y+b)2=1的圓心位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=1+2sinxcosx
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)在區(qū)間[-$\frac{π}{2}$,$\frac{π}{6}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.在平面直角坐標(biāo)系xOy中,圓C經(jīng)過(guò)A(0,1),B(3,4),C(6,1)三點(diǎn).
(Ⅰ)求圓C的方程;
(Ⅱ)若圓C與直線x-y+a=0交于A,B兩點(diǎn),且OA⊥OB,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=2sinx(sinx+$\sqrt{3}$cosx)-1(其中x∈R),求:
(1)函數(shù)f(x)的最小正周期;
(2)函數(shù)f(x)的單調(diào)減區(qū)間;
(3)函數(shù)f(x)圖象的對(duì)稱(chēng)軸和對(duì)稱(chēng)中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.化簡(jiǎn):tan70°sin80°($\sqrt{3}$tan20°-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知x>$\frac{1}{2}$,那么函數(shù)y=2x+2+$\frac{1}{2x-1}$的最小值是5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.若復(fù)數(shù)$\frac{2+3i}{3-2i}$=a+bi(a,b∈R,i為虛數(shù)單位),則ba=(  )
A.1B.-1C.0D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知集合M={x|x≥0,x∈R},N={x|x<1,x∈R},則M∩N=( 。
A.[0,1]B.[0,1)C.(0,1]D.(0,1)

查看答案和解析>>

同步練習(xí)冊(cè)答案