【題目】某公司為了解所經(jīng)銷商品的使用情況,隨機問卷50名使用者,然后根據(jù)這50名的問卷評分數(shù)據(jù),統(tǒng)計得到如圖所示的頻率布直方圖,其統(tǒng)計數(shù)據(jù)分組區(qū)間為[4050),[50,60),[60,70),[70,80),[80,90),[90,100]

(1)求頻率分布直方圖中a的值;

(2)求這50名問卷評分數(shù)據(jù)的中位數(shù);

(3)從評分在[4060)的問卷者中,隨機抽取2人,求此2人評分都在[50,60)的概率.

【答案】(1)0.006;(2)76;(3).

【解析】

1)由即可求得;(2)設中位數(shù)為,由即可求得;(3)先分別求出、內(nèi)的人數(shù),再按古典概型的概率計算公式計算即可.

(1)由頻率分布直方圖,可得(0.004+a+0.0156+0.0232+0.0232+0.028×101,

解得a0.006

(2)由頻率分布直方圖,可設中位數(shù)為m,

則有(0.004+0.006+0.0232×10+m70×0.0280.5,

解得中位數(shù)m76

(3)由頻率分布直方圖,可知在[4050)內(nèi)的人數(shù):0.004×10×502,

[5060)內(nèi)的人數(shù):0.006×10×503

設在[40,50)內(nèi)的2人分別為a1a2,在[50,60)內(nèi)的3人分別為B1,B2B3,

則從[40,60)的問卷者中隨機抽取2人,基本事件有10種,分別為:

a1a2),(a1B1),(a1,B2),(a1,B3),(a2B1),

a2B2),(a2B3),(B1,B2),(B1,B3),(B2,B3),

其中2人評分都在[50,60)內(nèi)的基本事件有(B1,B2),(B1,B3),(B2,B3)共3種,

故此2人評分都在[50,60)的概率為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,在邊長為3的菱形中,已知,且.將梯形沿直線折起,使平面,如圖2,分別是上的點.

(1)求證:圖2中,平面平面

(2)若平面平面,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給定數(shù)列,若滿足),對于任意,都有,則稱數(shù)列為指數(shù)數(shù)列.

1)已知數(shù)列、的通項公式分別為,,試判斷是不是指數(shù)數(shù)列(需說明理由);

2)若數(shù)列滿足:,,證明:是指數(shù)數(shù)列;

3)若是指數(shù)數(shù)列,,證明:數(shù)列中任意三項都不能構(gòu)成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線的右頂點到其一條漸近線的距離等于,拋物線的焦點與雙曲線的右焦點重合,則拋物線上的動點到直線距離之和的最小值為( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=﹣x+|2x+1|,不等式f(x)<2的解集是M.

(Ⅰ)求集合M;

(Ⅱ)設a,b∈M,證明:|ab|+1>|a|+|b|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在平行四邊形中,邊的中點,將沿折起,使點到達點的位置,且

(1)求證; 平面平面;

(2)若平面和平面的交線為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠用甲、乙兩種不同工藝生產(chǎn)一大批同一種零件,零件尺寸均在[21.7,22.3](單位:cm)之間的零件,把零件尺寸在[21.9,22.1)的記為一等品,尺寸在[21.8,21.9)[22.1,22.2)的記為二等品,尺寸在[21.7,21.8)[22.2,22.3]的記為三等品,現(xiàn)從甲、乙工藝生產(chǎn)的零件中各隨機抽取100件產(chǎn)品,所得零件尺寸的頻率分布直方圖如圖所示:

(Ⅰ)根據(jù)上述數(shù)據(jù)完成下列2×2列聯(lián)表,根據(jù)此數(shù)據(jù)你認為選擇不同的工藝與一等品產(chǎn)出率是否有關?

甲工藝

乙工藝

總計

一等品

非一等品

總計

P(K2≥k)

0.1

0.05

0.01

k

2.706

3.841

6.635

附:,其中

(Ⅱ)以上述兩種工藝中各種產(chǎn)品的頻率作為相應產(chǎn)品產(chǎn)出的概率,若一等品、二等品、三等品的單件利潤分別為30元、20元、15元,從一件產(chǎn)品的平均利潤考慮,你認為以后該工廠應該選擇哪種工藝生產(chǎn)該種零件?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將正方形ABCD沿對角線BD折成直二面角ABDC,有如下四個結(jié)論:

是等邊三角形 ③AB與平面BCD所成的角是ABCD所成角為,其中錯誤的結(jié)論個數(shù)是( )

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】

已知中心在原點,頂點A1A2x軸上,其漸近線方程是,雙曲線過點

(1)求雙曲線方程

(2)動直線經(jīng)過的重心G,與雙曲線交于不同的兩點M、N,問:是否存在直線,使G平分線段MN,證明你的結(jié)論

查看答案和解析>>

同步練習冊答案