11.拋物線y2=2x的準(zhǔn)線方程是(  )
A.y=-1B.$y=-\frac{1}{2}$C.x=-1D.$x=-\frac{1}{2}$

分析 直接利用拋物線方程寫(xiě)出準(zhǔn)線方程即可.

解答 解:拋物線y2=2x的準(zhǔn)線方程是:x=-$\frac{1}{2}$.
故選:D.

點(diǎn)評(píng) 本題考查拋物線的簡(jiǎn)單性質(zhì)的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知數(shù)列{an}滿足:${log_3}a{\;}_n+1={log_3}{a_{n+1}},({n∈{N^+}})$,且a2+a4+a6=9,則${log_{\frac{1}{3}}}({a_5}+{a_7}+{a_9})$的值為-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.命題“?x>0,lnx>0”的否定是( 。
A.?x>0,lnx>0B.?x>0,lnx>0C.?x>0,lnx≥0D.?x>0,lnx≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知橢圓G的中心在平面直角坐標(biāo)系的原點(diǎn),離心率$e=\frac{1}{2}$,右焦點(diǎn)與圓C:x2+y2-2x-3=0的圓心重合.
(Ⅰ)求橢圓G的方程;
(Ⅱ)設(shè)F1、F2是橢圓G的左焦點(diǎn)和右焦點(diǎn),過(guò)F2的直線l:x=my+1與橢圓G相交于A、B兩點(diǎn),請(qǐng)問(wèn)△ABF1的內(nèi)切圓M的面積是否存在最大值?若存在,求出這個(gè)最大值及直線l的方程,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.為征求個(gè)人所得稅法修改建議,某機(jī)構(gòu)調(diào)查了10000名當(dāng)?shù)芈毠さ脑率杖肭闆r,并根據(jù)所得數(shù)據(jù)畫(huà)出了樣本的頻率分布直方圖,

下面三個(gè)結(jié)論:
①估計(jì)樣本的中位數(shù)為4800元;
②如果個(gè)稅起征點(diǎn)調(diào)整至5000元,估計(jì)有50%的當(dāng)?shù)芈毠?huì)被征稅;
③根據(jù)此次調(diào)查,為使60%以上的職工不用繳納個(gè)人所得稅,起征點(diǎn)應(yīng)調(diào)整至5200元.
其中正確結(jié)論的個(gè)數(shù)有( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.若復(fù)數(shù)(2-i)(a+2i)是純虛數(shù),則實(shí)數(shù)a=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知直線l1:3x-y+2=0,l2:x+my-3=0,若l1⊥l2,則m的值等于3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.命題“若a>b,則ac>bc”(a,b,c都是實(shí)數(shù))與它的逆命題、否命題和逆否命題中,真命題的個(gè)數(shù)是( 。
A.4B.3C.2D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.若集合A={x∈Z|-2<x<2},B={x|y=log2x2},則A∩B=( 。
A.{-1,1}B.{-1,0,1}C.{1}D.{0,1}

查看答案和解析>>

同步練習(xí)冊(cè)答案