5.函數(shù)f(x)=eax-$\frac{1}{a}$lnx(a>0)存在零點(diǎn),則實(shí)數(shù)a的取值范圍是(0,$\frac{1}{e}$].

分析 令f(x)=0得eax=$\frac{1}{a}lnx$,根據(jù)y=eax與y=$\frac{1}{a}lnx$互為反函數(shù)可知兩圖象關(guān)于y=x對(duì)稱,故當(dāng)a取得最大值時(shí),y=x與兩函數(shù)相切.利用導(dǎo)數(shù)的幾何意義求出a的最大值即可.

解答 解:令f(x)=0得eax=$\frac{1}{a}lnx$,
∵a>0,∴ea>1,
∵y=eax與y=$\frac{1}{a}lnx$互為反函數(shù),
∴y=eax與y=$\frac{1}{a}lnx$的函數(shù)圖象關(guān)于直線y=x對(duì)稱,
∴當(dāng)y=x與y=$\frac{1}{a}lnx$相切時(shí),f(x)恰好有一個(gè)零點(diǎn),不妨設(shè)切點(diǎn)為(x0,y0),
則$\left\{\begin{array}{l}{\frac{1}{a{x}_{0}}=1}\\{{y}_{0}={x}_{0}}\\{{y}_{0}=\frac{1}{a}ln{x}_{0}}\end{array}\right.$,解得x0=y0=e,a=$\frac{1}{e}$.
∴當(dāng)a$>\frac{1}{e}$時(shí),y=eax與y=$\frac{1}{a}lnx$的函數(shù)圖象沒(méi)有交點(diǎn),當(dāng)0$<a<\frac{1}{e}$時(shí),y=eax與y=$\frac{1}{a}lnx$的函數(shù)圖象有兩個(gè)交點(diǎn).
故答案為(0,$\frac{1}{e}$].

點(diǎn)評(píng) 本題考查了函數(shù)的性質(zhì),函數(shù)零點(diǎn)的個(gè)數(shù)與函數(shù)圖象的關(guān)系,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知圓P:(x-1)2+y2=8,圓心為C的動(dòng)圓過(guò)點(diǎn)M(-1,0)且與圓P相切.
(1)求動(dòng)圓圓心的軌跡方程;
(2)若直線y=kx+m與圓心為C的軌跡相交于A,B兩點(diǎn),且kOA•kOB=-$\frac{1}{2}$,試判斷△AOB的面積是否為定值?若為定值,求出定值;若不為定值,說(shuō)明理由.(O為坐標(biāo)原點(diǎn))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.如圖,直三棱柱ABC-A1B1C1的棱長(zhǎng)均相等,點(diǎn)F為棱BC的中點(diǎn),點(diǎn)E在棱CC1上,且EF⊥AB1
(1)若CC1=λCE,求λ的值;
(2)求二面角F-AE-C1所成平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知函數(shù)f(x)=a|x+1|在區(qū)間(-1,+∞)上為增函數(shù),則g(x)=$\frac{sinx}{lo{g}_{a}(x+2)}$的圖象大致為( 。
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=ax2+ln(x+1).
(Ⅰ)當(dāng)a=-$\frac{1}{4}$時(shí),函數(shù)g(x)=f(x)-k在[0,2]內(nèi)有兩個(gè)零點(diǎn),求實(shí)數(shù)k的取值范圍;
(Ⅱ)當(dāng)x∈[0,+∞)時(shí),不等式f(x)≤x恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{1}{16}x+\frac{1}{4}{a}^{2},x≥0}\\{{x}^{2}+({a}^{2}-4a+3)x+(3-a)^{2},x<0}\end{array}\right.$,若對(duì)任意非零實(shí)數(shù)x1,存在唯一實(shí)數(shù)x2(x1≠x2),使得f(x1)=f(x2)成立,則實(shí)數(shù)a的值為2或6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)經(jīng)過(guò)點(diǎn)M(1,$\frac{\sqrt{3}}{2}$),F(xiàn)1,F(xiàn)2是橢圓C的兩個(gè)焦點(diǎn),|F1F2|=2$\sqrt{3}$,P是橢圓C上的一個(gè)動(dòng)點(diǎn).
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若點(diǎn)P在第一象限,且$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$≤$\frac{1}{4}$,求點(diǎn)P的橫坐標(biāo)的取值范圍;
(Ⅲ)是否存在過(guò)定點(diǎn)N(0,2)的直線l交橢圓C交于不同的兩點(diǎn)A,B,使∠AOB=90°(其中O為坐標(biāo)原點(diǎn))?若存在,求出直線l的斜率k;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知定義在R上的奇函數(shù)f(x),滿足對(duì)任意t∈R都有f(2+t)+f(t)=0,且x∈[0,1]時(shí),f(x)=$\frac{ex}{{e}^{x}}$,若函數(shù)g(x)=f(x)-loga|x|在其定義域上有5個(gè)零點(diǎn),則實(shí)數(shù)a的值為(  )
A.7或$\frac{1}{7}$B.5或$\frac{1}{5}$C.3或$\frac{1}{3}$D.e或$\frac{1}{e}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知(1+2i)(1-ai)=5(i是虛數(shù)單位),則實(shí)數(shù)a的取值為2.

查看答案和解析>>

同步練習(xí)冊(cè)答案