【題目】某大學藝術專業(yè)400名學生參加某次測評,根據男女學生人數比例,使用分層抽樣的方法從中隨機抽取了100名學生,記錄他們的分數,將數據分成7組: ,并整理得到如下頻率分布直方圖:
(Ⅰ)從總體的400名學生中隨機抽取一人,估計其分數小于70的概率;
(Ⅱ)已知樣本中分數小于40的學生有5人,試估計總體中分數在區(qū)間[40,50)內的人數;
(Ⅲ)已知樣本中有一半男生的分數不小于70,且樣本中分數不小于70的男女生人數相等.試估計總體中男生和女生人數的比例.
【答案】(1)0.4(2)20(3)3:2
【解析】分析:(1)根據頻率組距高,可得分數小于70的概率為:;
(2)由由頻率分布直方圖知,樣本中分數在區(qū)間 的人數為90人,從而可知樣本中分數在區(qū)間 內的人數為5人,設總體中分數在區(qū)間 內的人數為 ,則 ,從而即可得到答案;
(3)已知樣本中有一半男生的分數不小于70,且樣本中分數不小于70的男女生人數相等,進而得到答案.
詳解:(I)由頻率分布直方圖知,
分數在 的頻率為 ,
分數在 的頻率為 ,
則分數小于70的頻率為 ,
故從總體的400名學生中隨機抽取一人,估計其分數小于70的概率為 .
(Ⅱ)由頻率分布直方圖知,
樣本中分數在區(qū)間 的人數為 (人),
已知樣本中分數小于40的學生有5人,
所以樣本中分數在區(qū)間 內的人數為 (人),
設總體中分數在區(qū)間 內的人數為 ,
則 ,得 ,
所以總體中分數在區(qū)間 內的人數為20人.
(Ⅲ)由頻率分布直方圖知,
分數不小于70的人數為 (人),
已知分數不小于70的男女生人數相等,
故分數不小于70分的男生人數為30人,
又因為樣本中有一半男生的分數不小于70,
故男生的頻率為: ,
即女生的頻率為: ,
即總體中男生和女生人數的比例約為: .
科目:高中數學 來源: 題型:
【題目】某工廠每日生產一種產品噸,每日生產的產品當日銷售完畢,日銷售額為萬元,產品價格隨著產量變化而有所變化,經過一段時間的產銷,得到了的一組統(tǒng)計數據如下表:
(1)請判斷與中,哪個模型更適合刻畫之間的關系?可從函數增長趨勢方面給出簡單的理由;
(2)根據你的判斷及下面的數據和公式,求出關于的回歸方程,并估計當日產量時,日銷售額是多少?(結果保留整數)
參考公式及數據:線性回歸方程中,,.
,
,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中, 是正方形, 平面, , , , 分別是, , 的中點.
()求四棱錐的體積.
()求證:平面平面.
()在線段上確定一點,使平面,并給出證明.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某城市100戶居民的月平均用電量(單位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分組的頻率分布直方圖如圖所示.
(1)求直方圖中x的值;
(2)求月平均用電量的眾數和中位數;
(3)在月平均用電量為[220,240),[240,260),[260,280),[280,300]的四組用戶中,用分層抽樣的方法抽取11戶居民,則月平均用電量在[220,240)的用戶中應抽取多少戶?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱錐P-ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D為線段AC的中點,E為線段PC上一點.
(1)求證:PA⊥BD;
(2)求證:平面BDE⊥平面PAC;
(3)當PA∥平面BDE時,求三棱錐E-BCD的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐P-ABCD中,側面PAD是邊長為2的等邊三角形且垂直于底, 是的中點。
(1)證明:直線平面;
(2)點在棱上,且直線與底面所成角為,求二面角的余弦值。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列說法正確的是( 。
A. 某人打靶,射擊10次,擊中7次,那么此人中靶的概率為0.7
B. 一位同學做擲硬幣試驗,擲6次,一定有3次“正面朝上”
C. 某地發(fā)行福利彩票,回報率為,有人花了100元錢買彩票,一定會有47元的回報
D. 概率等于1的事件不一定為必然事件
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】直線過點P且與x軸、y軸的正半軸分別交于A,B兩點,O為坐標原點,是否存在這樣的直線滿足下列條件:①△AOB的周長為12;②△AOB的面積為6.若存在,求出方程;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com