【題目】吸煙有害健康,小明為了幫助爸爸戒煙,在爸爸包里放一個小盒子,里面隨機擺放三支香煙和三支跟香煙外形完全一樣的戒煙口香糖,并且和爸爸約定,每次想吸煙時,從盒子里任取一支,若取到口香糖則吃一支口香糖,不吸煙;若取到香煙,則吸一支煙,不吃口香糖,假設(shè)每次香煙和口香糖被取到的可能性相同,則口香糖吃完時還剩2支香煙的概率為(

A.B.

C.D.

【答案】D

【解析】

“口香糖吃完時還剩2支香煙”即第四次取到的是口香糖且前三次有兩次口香糖一次香煙,根據(jù)古典概型計算出其概率即可.

由題:“口香糖吃完時還剩2支香煙”說明:第四次取到的是口香糖,前三次中恰有兩次口香糖一次香煙,記香煙為,口香糖為,進(jìn)行四次取物,

基本事件總數(shù)為:

事件“口香糖吃完時還剩2支香煙”前四次取物順序分為以下三種情況:

煙、糖、糖、糖:

糖、煙、糖、糖:

糖、糖、煙、糖:

包含的基本事件個數(shù)為:54,

所以,其概率為

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A0,1),B0,﹣1),M(﹣1,0),動點P為曲線C上任意一點,直線PA,PB的斜率之積為,動直線l與曲線C相交于不同兩點Qx1y1),Rx2,y2),其中y10,y20且滿足

1)求曲線C的方程;

2)若直線lx軸相交于一點N,求N點坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為落實國家扶貧攻堅政策,某社區(qū)應(yīng)上級扶貧辦的要求,對本社區(qū)所有扶貧戶每年年底進(jìn)行收入統(tǒng)計,下表是該社區(qū)扶貧戶中戶從2016年至2019年的收入統(tǒng)計數(shù)據(jù):(其中貧困戶的人均年純收人)

年份

2016

2017

2018

2019

年份代碼

人均純收入(百元)

(1)作出貧困戶的人均年純收人的散點圖;

(2)根據(jù)上表數(shù)據(jù),用最小二乘法求出關(guān)于年份代碼的線性回歸方程,并估計貧困戶在2020年能否脫貧(:國家規(guī)定2020年的脫貧標(biāo)準(zhǔn):人均年純收入不低于)

(參考公式:)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,直線,動圓P與圓M相外切,且與直線l相切.設(shè)動圓圓心P的軌跡為E.

1)求E的方程;

2)若點A,BE上的兩個動點,O為坐標(biāo)原點,且,求證:直線AB恒過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】,,若9個零點,則的取值范圍是

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】汕頭市有一塊如圖所示的海岸,,為岸邊,岸邊形成角,現(xiàn)擬在此海岸用圍網(wǎng)建一個養(yǎng)殖場,現(xiàn)有以下兩個方案:

方案l:在岸邊,上分別取點,用長度為的圍網(wǎng)依托岸邊圍成三角形為圍網(wǎng)).

方案2:在的平分線上取一點,再從岸邊,上分別取點,,使得,用長度為的圍網(wǎng)依托岸邊圍成四邊形,為圍網(wǎng)).

記三角形的面積為,四邊形的面積為. 請分別計算,的最大值,并比較哪個方案好.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中,已知曲線和曲線,以極點為坐標(biāo)原點,極軸為軸非負(fù)半軸建立平面直角坐標(biāo)系.

(1)求曲線和曲線的直角坐標(biāo)方程;

(2)若點是曲線上一動點,過點作線段的垂線交曲線于點,求線段長度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在明代程大位所著的《算法統(tǒng)宗》中有這樣一首歌謠,放牧人粗心大意,三畜偷偷吃苗青,苗主扣住牛馬羊,要求賠償五斗糧,三畜戶主愿賠償,牛馬羊吃得異樣.馬吃了牛的一半,羊吃了馬的一半.請問各畜賠多少?它的大意是放牧人放牧?xí)r粗心大意,牛、馬、羊偷吃青苗,青苗主人扣住牛、馬、羊向其主人要求賠償五斗糧食(1=10升),三畜的主人同意賠償,但牛、馬、羊吃的青苗量各不相同.馬吃的青苗是牛的一半,羊吃的青苗是馬的一半.問羊、馬、牛的主人應(yīng)該分別向青苗主人賠償多少升糧食?(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),(其中a是常數(shù)).

(1)求過點與曲線相切的直線方程;

(2)是否存在的實數(shù),使得只有唯一的正數(shù)a,當(dāng)時不等式恒成立,若這樣的實數(shù)k存在,試求ka的值;若不存在.請說明理由.

查看答案和解析>>

同步練習(xí)冊答案