分析 設(shè)直線l夾在直線l1,l2之間的線段為AB(A在l1上,B在l2上),求出點(diǎn)B的坐標(biāo)(用A的坐標(biāo)表示),根據(jù)A在l1上,B在l2上,求得A的坐標(biāo),用兩點(diǎn)式求得直線l的方程.
解答 解:設(shè)直線l夾在直線l1,l2之間的線段為AB(A在l1上,B在l2上),A,B的坐標(biāo)分別設(shè)為(x1,y1),(x2,y2),因?yàn)锳B被點(diǎn)P平分,
所以x1+x2=4,y1+y2=0,于是x2=4-x1,y2=-y1
由于A在l1上,B在l2上,所以$\left\{\begin{array}{l}2{x_1}-{y_1}-2=0\\(4-{x_1})-{y_1}+3=0\end{array}\right.$,解得x1=3,y1=4,
即A的坐標(biāo)是(3,4),所以直線l的方程是$\frac{y-0}{4-0}$=$\frac{x-2}{3-2}$,即 4x-y-8=0.
點(diǎn)評(píng) 本題主要考查用待定系數(shù)法求直線方程,直線的兩點(diǎn)式方程的應(yīng)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $-\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 38 | B. | 39 | C. | 20 | D. | 19 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=-3x+5 | B. | y=3x-1 | C. | y=3x+5 | D. | y=2x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{1}{5}$ | B. | $\frac{1}{5}$ | C. | -$\frac{4}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com