【題目】如果對(duì)于函數(shù)f(x)定義域內(nèi)任意的兩個(gè)自變量的值x1 , x2 , 當(dāng)x1<x2時(shí),都有f(x1)≤f(x2),且存在兩個(gè)不相等的自變量值y1 , y2 , 使得f(y1)=f(y2),就稱f(x)為定義域上的不嚴(yán)格的增函數(shù).
則 ① , ② ,
, ④ ,
四個(gè)函數(shù)中為不嚴(yán)格增函數(shù)的是 ,若已知函數(shù)g(x)的定義域、值域分別為A、B,A={1,2,3},BA,且g(x)為定義域A上的不嚴(yán)格的增函數(shù),那么這樣的g(x)有 個(gè).

【答案】①③;9
【解析】解:由已知中:函數(shù)f(x)定義域內(nèi)任意的兩個(gè)自變量的值x1 , x2 ,
當(dāng)x1<x2時(shí),都有f(x1)≤f(x2),
且存在兩個(gè)不相等的自變量值y1 , y2 , 使得f(y1)=f(y2),
就稱f(x)為定義域上的不嚴(yán)格的增函數(shù).
, 滿足條件,為定義在R上的不嚴(yán)格的增函數(shù);
, 當(dāng)x1=﹣ , x2∈(﹣ , ),f(x1)>f(x2),故不是不嚴(yán)格的增函數(shù);
, 滿足條件,為定義在R上的不嚴(yán)格的增函數(shù);
, 當(dāng)x1= , x2∈(1,),f(x1)>f(x2),故不是不嚴(yán)格的增函數(shù);
故已知的四個(gè)函數(shù)中為不嚴(yán)格增函數(shù)的是①③;
∵函數(shù)g(x)的定義域、值域分別為A、B,A={1,2,3},BA,且g(x)為定義域A上的不嚴(yán)格的增函數(shù),
則滿足條件的函數(shù)g(x)有:
g(1)=g(2)=g(3)=1,
g(1)=g(2)=g(3)=2,
g(1)=g(2)=g(3)=3,
g(1)=g(2)=1,g(3)=2,
g(1)=g(2)=1,g(3)=3,
g(1)=g(2)=2,g(3)=3,
g(1)=1,g(2)=g(3)=2,
g(1)=1,g(2)=g(3)=3,
g(1)=2,g(2)=g(3)=3,
故這樣的函數(shù)共有9個(gè),
所以答案是:①③;9.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)的短軸一個(gè)端點(diǎn)到右焦點(diǎn)F的距離為2,且過點(diǎn)
(1)求橢圓C的方程;
(2)設(shè)M,N為橢圓C上不同的兩點(diǎn),A,B分別為橢圓C上的左右頂點(diǎn),直線MN既不平行與坐標(biāo)軸,也不過橢圓C的右焦點(diǎn)F,若∠AFM=∠BFN,求證:直線MN過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體中,平面平面,四邊形為正方形,四邊形為梯形,且,,

(Ⅰ)求證:平面

(Ⅱ)求證:平面;

(Ⅲ)在線段上是否存在點(diǎn),使得平面?若存在,求出的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)在,很多人都喜歡騎“共享單車”,但也有很多市民并不認(rèn)可.為了調(diào)查人們對(duì)這種交通方式的認(rèn)可度,某同學(xué)從交通擁堵不嚴(yán)重的A城市和交通擁堵嚴(yán)重的B城市分別隨機(jī)調(diào)查了20名市民,得到了一個(gè)市民是否認(rèn)可的樣本,具體數(shù)據(jù)如下列聯(lián)表

附:,

根據(jù)表中的數(shù)據(jù),下列說法中,正確的是(

A. 沒有95% 以上的把握認(rèn)為“是否認(rèn)可與城市的擁堵情況有關(guān)”

B. 有99% 以上的把握認(rèn)為“是否認(rèn)可與城市的擁堵情況有關(guān)”

C. 可以在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為“是否認(rèn)可與城市的擁堵情況有關(guān)”

D. 可以在犯錯(cuò)誤的概率不超過0.025的前提下認(rèn)為“是否認(rèn)可與城市的擁堵情況有關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知直線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸,取相同的長度單位建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(Ⅰ)求直線的普通方程和曲線的直角坐標(biāo)方程;

(Ⅱ)若曲線上的點(diǎn)到直線的最大距離為6,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某研究機(jī)構(gòu)為了調(diào)研當(dāng)代中國高中生的平均年齡,從各地多所高中隨機(jī)抽取了40名學(xué)生進(jìn)行年齡統(tǒng)計(jì),得到結(jié)果如下表所示:

年齡(歲)

數(shù)量

6

10

12

8

4

(Ⅰ)若同一組數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表,試估計(jì)這批學(xué)生的平均年齡;

(Ⅱ)若在本次抽出的學(xué)生中隨機(jī)挑選2人,記年齡在間的學(xué)生人數(shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是菱形,對(duì)角線,交于點(diǎn)

(Ⅰ)若,求證:平面;

(Ⅱ)若平面平面,求證:;

(Ⅲ)在棱上是否存在點(diǎn)(異于點(diǎn)),使得平面?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《史記》卷六十五《孫子吳起列傳第五》中有這樣一道題:齊王與田忌賽馬,田忌的上等馬優(yōu)于齊王的中等馬,劣于齊王的上等馬,田忌的中等馬優(yōu)于齊王的下等馬,劣于齊王的中等馬,田忌的下等馬劣于齊王的下等馬,現(xiàn)從雙方的馬匹中隨機(jī)選一匹馬進(jìn)行一場(chǎng)比賽,齊王獲勝的概率是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取件,測(cè)量這些產(chǎn)品的一項(xiàng)質(zhì)量指標(biāo)值,由測(cè)量結(jié)果得如頻率分布直方圖:

(1)求這件產(chǎn)品質(zhì)量指標(biāo)值的樣本平均數(shù)和樣本方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

(2)由直方圖可以認(rèn)為,這種產(chǎn)品的質(zhì)量指標(biāo)值服從正態(tài)分布,其中近似為樣本平均數(shù)近似為樣本方差.

①利用該正態(tài)分布,求

②某用戶從該企業(yè)購買了件這種產(chǎn)品,記表示這件產(chǎn)品中質(zhì)量指標(biāo)值位于區(qū)間的產(chǎn)品件數(shù).利用①的結(jié)果,求.

附:.若,則,.

查看答案和解析>>

同步練習(xí)冊(cè)答案