15.已知函數(shù)f(x)=x3的切線的斜率等于3,則切線有2條.

分析 求出函數(shù)的導(dǎo)數(shù),利用函數(shù)值求解切點(diǎn)的橫坐標(biāo),推出結(jié)論即可.

解答 解:函數(shù)f(x)=x3的切線的斜率等于3,
可得f′(x)=3x2,設(shè)切點(diǎn)的橫坐標(biāo)為m,則3m2=3,解得m=±1,
切點(diǎn)分別為(-1,-1);(1,1),所以切線有2條.
故答案為:2.

點(diǎn)評(píng) 本題考查切線方程的求法與判斷,注意判斷切線是否重合,考查分析問(wèn)題解決問(wèn)題的能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.下列四個(gè)結(jié)論中不正確的是(  )
A.若x>0,則x>sinx恒成立
B.命題“若x-sinx=0,則x=0”的否命題為“若x-sinx≠0,則x≠0”
C.“命題p∧q為真”是“命題p∨q為真”的充分不必要條件
D.命題“?x∈R,x-lnx>0”的否定是“?x0∈R,x0-lnx0<0”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=x-m(x+1)ln(x+1)(m>0)的最大值是0,函數(shù)g(x)=x-a(x2+2x)(a∈R).
(Ⅰ)求實(shí)數(shù)m的值;
(Ⅱ)若當(dāng)x≥0時(shí),不等式f(x)≥g(x)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)fn(x)=$\frac{n{x}^{2}-ax}{{x}^{2}+1}$(n∈N*)的圖象在原點(diǎn)處的切線的傾斜角為135°.
(1)求f1(x)的單調(diào)區(qū)間;
(2)設(shè)x1,x2,…,xn為正實(shí)數(shù),且$\sum_{i=1}^{n}$xi=1,求證:fn(x1)+fn(x2)+…+fn(xn)≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.作函數(shù)y=|1g|x-1||的大致圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.(1)已知角α終邊上一點(diǎn)P(m,1),$cosα=-\frac{1}{3}$,求tanα的值;
(2)求值:$\frac{tan150°cos(-210°)sin(-420°)}{sin1050°cos(-600°)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.2-2的值為( 。
A.4B.2C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.過(guò)點(diǎn)(-1,2)且在坐標(biāo)軸上的截距相等的直線的一般式方程是2x+y=0或x+y-1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.隨著生活水平的提高,人們對(duì)空氣質(zhì)量的要求越來(lái)越高,某機(jī)構(gòu)為了解公眾對(duì)“車(chē)輛限行”的態(tài)度,隨機(jī)抽查40人,并將調(diào)查情況進(jìn)行整理后制成如表:
年齡(歲)[15,25)[25,35)[35,45)[45,55)[55,65)
頻數(shù)51010510
贊成人數(shù)46849
(1)完成被調(diào)查人員年齡的頻率分布直方圖,并求被調(diào)査人員中持贊成態(tài)度人員的平均年齡約為多少歲?
(2)若從年齡在[15,25),[45,55)的被調(diào)查人員中各隨機(jī)選取1人進(jìn)行調(diào)查.請(qǐng)寫(xiě)出所有的基本亊件,并求選取2人中恰有1人持不贊成態(tài)度的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案